
THE BOLOGNA GRAPHICS LIBRARY

BGL USER'S MANUAL

A. Ficarra, M. Nanni
Istituto di Radioastronomia - CNR

L. Federici, A. Messina
Dipartimento di Astronomia - Bologna University

IRA 89/86 BGL 2/1985

1. Introduction 1
1.1. The main graphics library 2
1.2. The BGL command lamguage 3

i) System management 4
ii) Procedure execution 4

1.3. The basic CALCOMP software interface 5
1.4. The terminal management library 5
1.5. The miscellaneous routine library 6

i) Creation and management of files 6
ii) Management of cali sequences 7
ili) Various purposes 7

2. How to link a FORTRAN program to thè BGL 8

3. On thè graphio device management 10
3.1. The device specification 11
3.2. The "nuli" device 13

4. On thè "Interactive" and "off-line"
graphic tasks 16

4.1. The "Interactive" GT 16
4.2. The "off-line" GT 17

5. Why thè BGL is "user friendly" 20
5.1. The initialization procedure 20
5.2. The closure procedure 21
5.3. The default settings 21
5.4. The user errors and thè return code

number 23

6. On thè coordinate systems and transformations 25
6.1. The "generation" phase 26
6.2. The "visualization" phase 27

7. On thè graphic cursor and current point 32

8. On thè graphic output 34
8.1. The function FI 34
8.2. The function F2 35
8.3. The function F3 36
8.4. The function F4 36
8.5. The function F5 37
8.6. The function F6 37
8.7. The function F7 38
8.8. The function attibutes 39

i) The "line-type" attributes 39
ii) The "gray-level" attributo 40
ili) The "marker-symbol", "marker-orientation"

and "marker-size" attributes 40
iv) The "text-orientation" and "text-size"

attributes 41
v) The "picture-identifier" attributo 41

9. On thè colour tables 43

APPENDIX A - How to instali BGL on a VAX/VMS System 45
1. Introduction 45
2. Defining thè backup medium 46
3. Defining thè BGL disk name 46
4. Loading thè "bootstrapping" procedure 47
5. Running thè "bootstrapping" procedure 47
6. Starting thè main installation procedure 48
7. Configuring each device type in your System 48
8. Creating thè device-independent routine

shereable image 51
9. Final operations 52

APPENDIX B - The main graphics library 53
Subroutines which terminate thè current GT 53
Subroutines which control thè "application"

transformations 53
Subroutines which control thè "device" 53

transformations 53
Subroutines which control thè clipping rectangle 54
Subroutines which control thè colour tables 54
Subroutines which allow Interactive use of thè

Graphic Cursor (GC) 55
Subroutines which control thè current point (CP) 55
Subroutines which draw linear elements 55
Subroutines which fili a selected area 55
Subroutines which draw closed lines and fili thè

internai area, if required 56
Subroutines which clear graphic objects from

selected areas 56
Subroutines which draw a graphic text 56
Subroutines which save or restore pictures 57
Subroutines which control thè function attributo 57
Subroutines which inquire for 57

APPENDIX C - The basic CALCOMP software interface 59
Subroutines which perforiti basic functions 59
Subroutines which perform more complex functions 59

APPENDIX D - The terminal management library 60
Subroutines which are effective on any type of

terminal 60
Subroutines which are effective only on terminals

conform to ANSI standard, such as DEC VT100 60

1. INTRODUCTION.

The Bologna Graphics Library (BGL), Version 1.0, is a

software environment, whose major component is a library of

FORTRAN-callable basic graphics subroutines running only under

thè VAX/VMS operating System. Its main purpose is to provide

users with application programs that generate and manipulate

pictures on any graphic peripheral.

The background and thè main characteristics of thè BGL System

are described in thè "Presentation" paper (BGL 1/84). We suggest

that thè user reads that paper before reading this manual, that

explaines which functions thè BGL System performs and how they

are executed. In thè manual BGL 3/85 users can find reference

informations for thè use of thè BGL subroutines, whereas in thè

manual BGLA 4/86 informations can be found on a BGL advanced

(BGLA) library which uses thè BGL subroutines either to create a

graph with axis lines, labels, scale annotations and tick marks

or to perform more specific activities as recalling a graphical

output previously saved, or drawing an histogram or contour

lines.

The main components of thè BGL are:

a) thè main graphics library;

b) thè command language;

e) thè basic Calcomp software interface;

d) thè terminal management library;

e) thè miscellaneous routine library.

Except thè Calcomp interface subroutines, that keep their

traditional names, ali thè BGL routines have names composed of

Page 2

two parts: thè first one is thè string "BGL_", common to ali thè

BGL routine names, to prevent any ambiguity with thè names of

other user or looal System library routines; thè seoond one is a

set of characters either not more than six in thè graphics

library (usually an acronym obtained from thè

expression which describes thè function performed), or not more

than seven in thè terminal control library (thè first two being

"VT").

In thè Appendix A, instruction can be found to instali thè

BGL System on a VAX/VMS System.

1.1. THE MAIN GRAPHICS LIBRARY.

The subroutines of thè main library perforiti graphics

"primitives", that is, basic graphical functions which can be

summarized as follow.

Draw "picture objets", like vectors, any type of polygons,
boxes, arcs and circles.

"Shade" each object to a defined horizontal shade line with
a uniform gray or colour intensity.

Fili or erase selected areas on devices equipped with
"raster" addressability.

Define thè portion of thè picture that it will be seen
("window") and generate a picture "clipped" within thè
window.

Define thè portion of thè graphic device surface on which
thè picture will be drawn ("viewport")

Change thè user coordinate System ("world coordinate"), by
providing a new unit of measure ("scaling"), or redefining
thè System origin ("translation"), or giving thè new
coordinates of thè boundaries of a selected rectangular area
("mapping").

Page 3

Represent alphanumeric texts and numbers in graph mode.

Manipulate colours and colour look-up tables.

Perfora input operations by means of a position "locator",
such as a cursor or a crossbar moved by a joistick.

Save a sequence of routine calls (in a coded format) and thè
associated input argument values into a file on thè user
reserved disk area.

Execute thè graphic operations previously saved in a file
through a single cali.

Select thè physical device where to display thè pictures.

Print thè image of a terminal screen on paper, if thè
selected peripheral is equipped with a "hard-copy" device.

Moreover, thè main graphics library subroutines allow

alphanumeric actions such as those performed by thè following

subroutines:

BGL_APLDEF : define an alphanumeric area ("scroll"),

BGL_ALPCLR : clear an alphanumeric area,

BGL_CLRASC : clear ali thè alphanumeric texts on thè
screen.

These routines can be used on any terminal with any graphic

action, since their characteristics are known to thè graphics

library.

In Sect. 8., a detailed examination of thè graphic functions

will be done; whereas a list of thè names and related functions

of thè routines of this library can be found in Appendix B.

1.2. THE BGL GOMMANO LANGUAGE.

In addition to thè library of graphics subroutines, thè BGL

Page 4

System is equipped with a simple Command Language, whose purpose

is to allow thè user to operate on thè System in an easy and

quiclc way, or to ezecute some tasks involving thè use of graphic

subroutines.

The access to thè Command Language is obtained entering at

thè user terminal thè string "BGL" followed by one (or more)

sub-commands and thè related parameters invoking specific

functions. As thè subroutine library, also thè Command Language

can be easily expanded and could allow thè execution of an ever

increasing number of graphics Utilities.

At thè present, thè Command Language performs two sets of

functions, which are described in thè following.

i) System management.

These commands are reserved to privileged users and allow:

$ BGL INSTALL : thè installation of thè BGL;

$ BGL CONFIG : thè definition of thè locai System
configuration (or reconfiguration) with
respect to thè peripherals;

$ BGL UPGRADE : thè BGL software updating.

ii) Procedure execution.

These commands can be entered by any user and set on

procedures which allow:

$ BGL LINK : thè "linking" of thè application program to
thè BGL;

$ BGL ASSIGN : thè selection of thè out-of-line device to
be used;

$ BGL RELEASE : thè management of thè graphic output sent

Page 5

to assigned peripherals;

$ BGL SHOW : thè request of informations on thè locai
System configuratici!;

$ BGL HARD : thè out-of-line hard-copy of thè device
screen on a graphical printer;

An on-line help is also provided, to let thè user know action

and required parameters of any command. It can be activated

entering "?" after thè string "BGL". The Fig. 1 visualizes thè

structure of thè commands, an asterisk marks thè commands

reserved to privileged users.

1.3. THE BASIC CALCOMP SOFTWARE INTERFACE.

The BGL System contains also a library of subroutines with

thè same names, purposes and calling sequencies as thè main

subroutines of thè basic Calcomp-Versaplot library. These

subroutines cali thè BGL routines and actually work as a software

interface between thè application program and thè BGL System.

Therefore, thè old user programs containing calls to thè basic

Calcomp routines can stili be runned in thè BGL System.

Moreover, by means of this interface, also thè high-level Calcomp

graphics packages that cali basic Calcomp routines can be runned

in thè BGL environment. The Appendix C lists thè names and

relative functions of thè rcvtines cont̂ ined in this library.

1.4. THE TERMINAL MANAGEMENT LIBRARY.

This library consists of two groups of subroutines. The

BGL COMMANDS (* => SYSTEM MANAGER ONI..Y)

SHOW HARD LIST RELEASE ASSIGN

UPGRADE* SYSTEM»

DOCUM NAMES

LINK INSTALL* CONFIG*

PHYS1CAL-PARAM

I
DD_HARD DEC-NUM REM-LINE

ADD-LINE DEC_TYPE
LOOK_UP_TABLE

I
STANDARD

'REM_HARB
PHYSICAL_PARAM

MODIFY DISPLAY MODIFY DISPLAY

LOOK_UP_TABLE

PHYSICAL_PARAM

LJNES DEC_TYPE
IDENT NUM_LINES

I
DEC-NUM

HARD-COPY

Kig. I

Page 6

first group is formed by routines that allow to operate in

"full-screen mode" on video terminale of thè DEC VT100 family,

whereas they do not produce any effect when called at terminale

of any other type. With this set of routines it is possible to

perforiti interactively operations such as thè splitting of thè

screen into several areas, or thè moving of thè alphanumeric

cursor to locate thè wanted function from a "menu" displayed on

thè screen, or thè writing of "blinking" texts or in

"reverse-video" mode ete...

If this set of routines is used to manage thè terminal screen

in alphanumeric mode, caution is necessary, when a graphic

session is performed, since thè parameters used are not known to

thè main graphics library.

The second group consists of routines working on any type of

terminal and allows to set or to modify some terminal line

characteristics (for instance, it is possible to disable thè

terminal from receiving broadcast messages).

The Appendix D lists thè names and relative functions of thè

routines of this library.

1.5. THE MISCELLANEOUS ROUTINE LIBRARY.

These routines are mainly used by thè graphics library for

internai management but they can also be accessed by thè user for

his applications. Three different functions can be performed,

which are thè following:

i) Creation and management of files.

Page 7

The routines of this set manage files mapped in thè process

virtual memory. Their functions are:

BGL_OPEN_SE : generate a new file or access to an existing
file;

BGL_CLOSE_SE : dose a file;

BGL_CLEAR_SE : clear thè content of a file;

BGL_READ_SE : read data from a file;

BGL_WRITE_SE : write data in a file.

ii) Management of cali sequences.

The routines of this second set operate on thè argument list

of a cali (written in Assembler). Their functions are:

BGL_DEFARG : report if an optional argument has been
specified or not (it is a logicai function);

BGL_TRADDR : transfer thè control to a routine specified
as an argument;

BGL_TRANSF : transfer thè cali sequence (included thè
optional arguments) from a subroutine to
another one specified as an argument.

iii) Various purposes.

The routines of this last set cali System Service procedures.

Their functions are:

BGL_CPUPAG : return thè CPU time and thè number of page
faults;

BGL_TYPE : perforiti in a FORTRAN program thè DCL command
$ TYPE;

BGL_WAIT : set thè process in "WAIT" for thè indicated
time.

Page 8

2. HOW TO LINK A FORTRAN PROGRAM TO THE BGL.

An application program calling BGL routines needs to be

linked to thè BGL in order to become executable. Ali thè user

addressable BGL routines are in thè form of "shareable images"

and reside in an apposite "library of shareable images". The

full name of thè file containing this library is installation

dependent. If this name is known (for instance,

BGL_DISK:[BGL.EXE]BGLSHR.EXE), thè user has simply to include it

as an input to thè LINK command, with thè /LIB qualifier.

Assume, for instance, that thè user compiled main program

(MYPROG.OBJ) calls some routines, besides BGL, residing in thè

user file MYSUB.OBJ and in thè user object-module library

MYLIB.OLB; in this case thè string command to be entered is

$ LINK MYPROG,MYSUB,MYLIB/LIB,-

$_BGL_DISK:[BGL.EXE]BGLSHR/LIB

Otherwise, thè BGL Command Language can be used, typing thè

following command to VAX/VMS:

$ BGL LINK MYPROG,MYSUB,MYLIB/LIB

Whichever thè linking procedure used, thè executable image

(MYPROG.EXE) can be runned by typing thè usuai command

$ RUN MYPROG

However, residing thè BGL routines as shareable images, thè image

program obtained presents two important peculiarities.

First, thè content of thè shareable images is not copied in

Page 9

MYPROG.EXE; tliis file contains only thè pointers to thè BGL

shareable images, and this, of course, saves disk Storage space.

Second, thè image file MYPROG.EXE accesses thè BGL

subroutines through "transfer vectors" and is automatically

updated at run time, when thè BGL software has been updated or

when a new graphic device has been made available by a new device

driver. Therefore, software improvement and new installed

graphic devices are immediately available to thè users without

any need of relinking their programs.

When many users run different graphics programs, this is a

very powerful feature.

Page 10

3. ON THE GRAPHIC DEVICE MANAGEMENT.

Here and in thè following, it is defined as "Graphic Task"

(GT) a set of graphics operations performed on a selected device,

thè so-called "Current Graphic Device" (CGD).

The CGD cannot be changed during thè execution of a GT, but

it can be redefined when a GT is closed and a new GT is started,

if desired. Actually, several GT's can be performed in sequence,

when running a single application program. Moreover, it is

possible to change thè CGD at thè start of a new GT, without

exiting from thè program.

This is thè basic feature which characterizes thè claimed

"device independence" of thè BGL: not only an application

program can run unchanged on any device, but it is also possible

to select or modify thè CGD dynamically, according to thè results

of computations, or to thè answers given during thè execution of

an interactive program.

As an example, assume that a program designed to perforiti

iterative processes gives a plot on thè user terminal screen, as

a result of each iteration. Vith thè BGL, thè program can be

structured in such a way that thè user controls interactively

whether thè iteration process have to continue and, when thè

desired results are obtained, he changes thè CGD, in order to

produce a final graphic output on a plotter.

The CGD can be changed either, out of an applicative program,

by means of thè BGL Command Language, in particular with thè

command

Page 11

$ BGL ASSIGN devnam

or, inside a program, by a cali to thè BGL routine, which is

BGL_NEWDEV ('devnam')

Of course, thè second type of assignment (thè dynamical one)

prevails on thè first one, but is effeotive only as long as thè

program is running. On thè contrary, thè first type of

assignment is active either untili thè user log-in session is

current or untili a new command $ BGL ASSIGN devnam is issued.

The user can ask to thè System thè actual CGD inserting in a

program a cali to thè routine

BGLJDEVINQ (DEVNAM,LENG)

which returns thè string of thè device name (DEVNAM) and its

length (LENG).

3.1. THE DEVICE SPECIFICATICI.

At thè beginning of a running session, thè user can learn thè

names of ali thè device types whose software interfaces are

available, by entering thè command

$ BGL LIST NAMES

Each physical device is identified by a name, that usually should

be easy to memorize (as VT125, VERSATEC etc...), and by an order

number associated to each installed peripheral of thè same type.

The order number is optional when entering a cali to BGL

Page 12

routines and its default value is 1. To know thè number of thè

devices of thè same type thè user can enter thè command

$ BGL SHOW devnam LINES

which returns a name list of thè physical lines connecting thè

device devnam to thè computer.

The user CGD is identified, by default, by thè special string

11TT", whichever thè actual name and thè order number of thè

terminal are. Therefore, thè user has not to define a CGD when

he wants to perform graphics operations interactively on a

terminal screen. Only when a graphic output is requested on a

different device, thè user must define a new CGD. To return to

thè interactive terminal thè CGD must be reassigned either

inserting thè string "TT" as a parameter of thè BGL ASSIGN

command, i.e.

$ BGL ASSIGN TT

or giving thè same string as thè argument of thè BGL_NEWDEV

routine calling sequence, i.e.

BGL_NEWDEV ('TT')

In this case, note that thè assignment of thè actual name of thè

interactive terminal, instead of thè string "TT", produces a

completely different effect. Namely, thè graphic output is

considered "off-line" (cfr. Sect. 4.2. for "off-line" GT), and

could be obtained on thè screen of thè interactive terminal only

when thè LOGOFF command is given.

In a FORTRAN program informations on thè physical device can

Page 13

be obtained by a cali to thè following routines:

BGL_DEVINQ : thè name of thè current device;

BGL_DSCINQ : thè coordinates of thè boundary of thè
physical viewport (in "standard units",
cfr. Sect. 6.);

BGL_DSSINQ : thè coordinates of thè boundary of thè
physical viewport (in "screen normalized
units", cfr. Sect. 6.).

3.2. THE "NULL" DEVICE.

Up to now we have supposed that a CGD is always assigned to a

graphic device. This is not true when it occurs one of thè

following events:

No CGD was explicitly assigned and thè user is not working
in an Interactive session (a batch job, for example).

No CGD was explicitly assigned and thè user terminal is not
recognized as a graphic peripheral (ali thè available
graphic devices are declared at thè installation or
reconfiguration time).

The user has tried to assign a new CGD, but has mispelt thè
device name, so that thè System cannot identify thè entered
name among those of thè installed graphic devices.

The user has intentionally entered a meaningless device name
when assigning a new CGD.

In ali thè above listed cases, thè CGD is assigned to thè

so-called "nuli" device. If thè "nuli" device has been selected

(intentionally or not), thè user is notified of this event either

by a message displayed at thè terminal (when thè BGL ASSIGN

command has been entered), or by a return code set to a specifio

value (when thè BGL_NEWDEV routine has been called).

If thè "nuli" device is selected, application programs using

Page 14

BGL routines can be stili runned, but no graphic output is

actually produced, even if it is stili effective ali thè

remainder of graphics operations not directly intended to draw

pictures or to perforiti Interactive operations on a physical

device.

A possible application of this particular device is

illustrated in thè following example. If thè user is not

interested in thè immediate examination of a picture, he can

select thè "nuli" device to save thè graphic output in a file.

In this way, thè user can draw later thè saved picture as many

time as he wants, select parts of it, use different scale

factors, change thè output device etc..., ali without repeated

and separate runs of thè applicative program.

The names and relative functions of thè BGL routines which

allow thè writing on and thè reading from User Graphic Files

(hereafter UGF) are thè following:

BGL_SVINIT : Initialize thè specific User Graphic File
(UGF). Ali thè subsequent graphic operations
will be saved in thè UGF.

BGL_SVGLOS : Glose thè UGF opened with a cali to
BGL_SVINIT.

BGL_SVMIMA : Compute boundary coordinates of a picture
previously saved in a UGF.

BGL_SVEXEC : Display pictures previously saved in a UGF.

It is worth to stress at this point that, if thè terminal

cannot work at thè same time in graphic and alphanumeric modes, a

cali to thè routine BGL_STAMOD must be done to Set thè Terminal

to Alphanumeric MODe, before any action such as, for instance, a

Page 15

FORTRAN READ or WRITE instruction. The reverse setting (from

alphanumeric to graphic) is performed automatically at any cali

of a graphics library routine.

Page 16

4. ON THE "INTERACTIVE" AND "OFF-LINE" GRAPHIC TASKS.

Graphic Tasks operating on a "nuli" device are very unusual;

mostly GT's work on actual physical peripherals, known to thè

System (namely, their names vere entered at thè installation or

at thè reconfiguration time). In these cases thè GT's fall into

two classes: "Interactive" GT's and "off-line" GT's. The type

of GT can be tested in thè program by a cali to

BGL_STAMOD (ICOD)

which returns different code numbers (ICOD) for each GT type.

4.1. THE "INTERACTIVE" GT.

A GT is defined "Interactive" when ali thè following

conditions are satisfied at a time

No CGD was explicitly assigned or a CGD has been reassigned
with thè string "TT".

The image running thè GT has been activated by an
Interactive process (namely, thè user started thè process by
entering Username and Password on a terminal), and hence thè
image owner process is not a batch-job or a detached
process.

With an Interactive GT thè user can perforiti graphic

operations at thè terminal in real time: control a picture while

it is being build up, exchange Information with thè program,

modify a picture according to thè Information obtained from thè

picture itself, etc...

Moreover, thè user can perforiti some specific Interactive

Page 17

operations, such as to move a cursor (cfr. Sect. 7.), to measure

thè position of some points on thè screen (cfr. Sect. 7.), or to

define interactively thè boundary of a screen area (cfr.

Sect. 6. and Sect. 7.), ect...

4.2. THE "OFF-LINE" GT.

A GT is defined as "off-line" if thè CGD has been explicitly

assigned and its name (different from "TT") matches thè name of

thè graphic devices declared at thè installation or

reconfiguration time. An "off-line" GT does not display thè

graphic output immediately, but stores it into an intermediate

file, using a symbolic code to indicate thè calls to thè

device-dependent routines and thè values of thè associated

arguments.

Ali thè files created by "off-line" GT's (here and in thè

following "Off-line Graphic File", OGF) are put into a dedicated

directory named

BGL_DISK:[BGL.BAT]

with a name

ABC123456.USR

where ABC is thè name of thè physical device without thè first

letter, thè number gives hour (12), minutes (34), seconds (56) of

thè generation time, and USR reports thè first three letters of

thè Username.

The OGF are read by a System process, named BGLGEST, which is

Page 18

started by thè start up procedure and is always running.

However, it does not vaste any of thè System computational

resources, since it is normally "hibernate".

At thè end of a GT, a mailbox is sent by thè "dose" routine

of thè device-independent library and wakes up thè BGLGEST

process by providing it with thè name of thè OGF just created.

Then, BGLGEST generates a "detached" process to which thè OGF is

assigned as prixnary input, with a name derived from thè OGF name,

i.e.

USRABC12345678

where thè symbol have thè same meaning of thè previous example of

OGF name, except thè last two digits (78), assigned by an

automatic counter which spans thè number field from O to 99, in

sequence.

The "detached" process opens thè OGF and reads first a header

containing generai information, such as thè name of thè assigned

device (CGD). If thè CGD is not allocated to another user, ali

thè remainder of thè OGF is read, thè coded device-dependent

routines are performed, and thè graphic output is produced on thè

CGD. Finally, thè OGF is purged. Otherwise, if thè CGD is

allocated to another user, thè detached process ends without

performing any graphic operation, but thè related OGF is not

purged.

To assure a sort of "spooling" in this last case, BGLGEST is

scheduled to wake up every three minutes, to scan thè directory

BGL_DISK: [BGL.BAT] and, for every OGF found, to perforiti thè same

procedure outlined before, in thè case of a wake up by a mailbox.

Page 19

Therefore, at thè end of a GT, a graphic output not immediately

produced is queued and searched for every three minutes, to be

sent on thè requested CGD as soon as possible.

If thè BGLGEST process individuates thè CGD as a device

classified as not automatic at thè installation time (for

instance, some tipe of plotter requiring an esternai feeding

between a graphic output and thè other), it puts thè OGF in a

HOLD state. In this case, it is thè user who commands thè

release of thè output entering

$ BGL RELEASE devnam

when thè device devnam is ready. Furthermore, thè user can also

stop its own "detached" process, created by BGLGEST, entering,

for instance

$ STOP USRABC12345678

If this happens, thè user should also recali to purge thè

corresponding OGF (ABC123456.USR, in thè example given).

Page 20

5. WHY THE BGL IS "USER FRIENDLY".

The "user friendliness" of thè BGL systems consists mainly in

letting thè System do as many thlngs as possible, and in

requiring thè user to perform only aotions strictly connected

with their application problems. Therefore, many functions that

thè System needs to set up in order to operate properly, but that

do not concern directly thè user, are performed automatically.

In thè following ali thè operations and parameter values which

are given by default and a particular System of error control

related to thè "return code number" are commented.

5.1. THE INITIALIZATION PROCEDURE.

The initialization of a GT is performed automatically as thè

first BGL routine cali is executed in a running program, even if

a previous GT in thè same program has been closed. The

initialization procedure performs mainly thè following function,

in sequence.

Set thè System parameters to their initial values (system
state-defining ' parameters to internai values, graphic
attributo and coordinate transformation coefficients to
initial default values, etc...).

Identify thè GT type ("off-line", "interactive") and thè
CGD.

If thè CGD is not thè "nuli" device, select thè appropriate
device-dependent library and built up a table of address to
allow thè immediate translation of any subsequent cali to a
device-independent routine into thè corresponding
device-dependent cali.

If thè GT is "interactive", save thè normal working
characteristic of thè terminal, in order to restore them

Page 21

when thè GT is closed; set ali thè device graphic initial
conditions; set thè terminal in graphic mode.

If thè GT is "off-line", generate and open an OGF; write a
header with generai Information about thè GT and thè
selected graphic device.

5.2. THE CLOSURE PROCEDURE.

The closure procedure too is automatically performed when thè

program is either at thè end or aborted, as a consequence of an

error or of a CNTRL Y display command. In these cases, thè

following operations are performed.

Whichever thè GT type is, check if a user file for storing
graphic output is open and, if it is, save thè last graphic
data and close thè file.

If thè GT is "Interactive", complete thè last graphic
operation; reset thè working characteristics of thè terminal
to their normal condition.

If thè GT is "off-line", write thè last data, if any, on thè
OGF; close thè OGF; send a mailbox to thè BGLGEST System
process (cfr. Sect. 4.2.).

If necessary, thè user can control thè closure procedure by a

cali to routines which are:

BGL_CLOSE : close thè GT leaving thè device unchanged;

BGL_NEWDEV : close thè GT assigning a new device for thè
new GT.

5.3. THE DEFAULT SETTINGS.

Ali thè BGL routines involve a large set of parameters which

describe thè operating state of thè System (coordinates, storing

Page 22

files, graphics attribute, etc...) and which nave not to be

changed at any time a GT is performed. Therefore, ali these

parameters are set by thè System to consistent standard values,

i.e. thè default values or defaults, concisely. These defaults

are of two types, "initial" defaults and "routine argument"

defaults.

The "initial" defaults are thè parameter values which are set

by thè initialization procedure (cfr. Sect. 5.1.) and which

remain in effect untili explicitly changed by thè user. These

values are either device independent (f.i., thè initial units of

thè application coordinate System, cfr. Sect. 6.), or device

dependent (f.i., thè colour to be used in drawing objects).

The default values changed by thè user with a cali to BGL

routines become "current" default values and are effective for

ali thè subsequent calls to thè function using that parameter.

The "routine defaults" are thè values assumed by optional

argument of some BGL routine. If not otherwise specified, thè

assumed values coincide with thè "current" default values defined

by thè last cali to thè corresponding default setting routine, or

with thè "initial" defaults, if thè user has not modified it in

thè program. The following list makes clear how to default an

argument value in a subroutine.

CALL BGL_SUB (A.B.C) no argument defaulted

CALL BGL_SUB (,B,C) argument A defaulted

CALL BGL_SUB (A,,C) argument B defaulted

CALL BGL_SUB (A) arguments B and C defaulted

CALL BGL_SUB ali arguments defaulted

Page 23

Since VAX/VMS FORTRAN does not allow to default string

arguments, thè user should pass thè "blank string" (' '), to

obtain string default values.

5.4 THE USER ERRORS AND THE RETURN CODE NUMBERS.

A great care has been applied to test ali thè BGL software

components in order to make thè System error free. Of course, it

cannot be excluded that errors may stili occur and that changes

may be needed to improve both thè software structure and thè

functional efficiency of thè System, but it is a task of thè

System manager to correct thè System software updating BGL, if

necessary.

The most frequent source of errors is thè user indeed, who

usually supplies wrong argument values to thè BGL routines. In

this case, it was decided to avoid a complete "error handling"

facility, as in some more complex graphics systems. Therefore,

except in a few desperate cases, thè error condition is not

notified to thè user and no error message is returned. Rather,

thè System itself either ignores thè cali, setting initial

default values, or takes some corrective actions to avoid a fatai

error with a subsequent abort of thè program.

If thè user, for example, has tried to set a screen area

which is partially outside thè physical available surface of thè

device, thè System corrects, in thè internai BGL memory space,

thè values given by thè user and sets thè area properly.

The user is made aware of thè result of any cali to BGL

routines by a System of "return code numbers", which are

Page 24

arguments of thè BGL routines, always optional and always thè

last in thè sequence of thè subroutine arguments. The list of

thè possible "return code numbers" and their meaning is reported

in thè reference manual BGL 3/85. The "return code number" is

omitted only when it is really impossible to make an error.

The same "return code number" System is also used to report

thè state of thè System, if required.

Page 25

6. ON THE COORDINATE SYSTEMS AND TRANSFORMATIONS.

The length units, thè scale factors and thè mapping of thè

user graphics onto a device screen are thè main problems to face,

when thè development of a graphics software is undertaken. In

thè BGL System these problems have been solved taking into

account thè advantages of different main graphics softwares

actually in use and thè development of modern video terminals,

which have determined thè introduction of thè so-called "virtual

graphics".

To reach this result thè three following worlds have been

individuated.

The science universe, where thè user problem is set
("application" piane), with its own cartesian and orthogonal
coordinate System ("application" System) and its own length
units ("application" units).

The wonderland universe, where thè graphic output is
generated ("virtual" piane), with its own cartesian and
orthogonal coordinate System ("virtual" System), with its
own length units in centimetre ("standard" units), and
unlimited in extension.

The physical universe, where thè graphic output is
visualized ("device" piane), with its own cartesian and
orthogonal coordinate System ("device" System), and with its
own length units either in centimetre ("standard" units) or
in Screen Normalized units ("SN" units).

Moreover thè following two linear trasformations have been

defined.

The transformation from thè "application" System to thè
"virtual" System (Application TRansformation or ATR).

The transformation from thè "virtual" System to thè "device"
System (Device TRansformation or DTR).

Page 26

with these premises, two distinct steps correspond to thè

production of a graphic output: a "generation" phase, with thè

graphio output on thè "virtual" piane, and a "visualization"

phase, with thè graphic output on thè "device" piane. Usually,

thè second step follows automatically thè first and thè user

cannot detect any difference between thè two. Only in two cases

it is thè distinction real:

when thè graphio output generated in a GT is saved on a UGF
from a "nuli" device;

when a graphic output is obtained starting from a previous
UGF.

In thè first case, only thè "generation" phase is present, in thè

second one only thè "visualization" phase is performed.

6.1. THE "GENERATION" PHASE.

It is assumed that thè user has defined his "application"

System and units (luminosity versus time, adimensionai unìts

versus adimensionai units, etc...). The point coordinates that

thè user enters as arguments of thè BGL subroutines are almost

always in "application" units.

The BGL routines perforiti an ATR; namely, transform linearly

thè "application" System with "application" units in thè

"virtual" System with "standard" coordinates. The coefficients

of thè transformation are memorized in an internai area and can

be used, on request. With this transformation thè graphic output

is generated on thè unlimited "virtual" piane, and ali thè

Page 27

graphic objects rapresented in it bave dimensions in "standard"

unit s (cent imet re).

At thè start of a GT, thè default ATR is unitary, i.e. thè

"application" System coincides with thè "virtual" System.

However, thè user can define an ATR in different ways by means of

thè following routines:

BGL_ATRSET : set a new ATR;

BGL_ATRMAP : set new coordinates of a rectangular area in
thè "application" System, starting from thè
current "application" coordinates;

BGL_ATRDEF : return to thè default "virtual" System;

BGL_ATRINQ : request to thè System thè current parameters
of thè actual ATR (f.i., in order to save thè
current transformation coefficient and to
restore them later, via BGL_ATRSET);

It is also possible to define a "clipping" area (i.e., an

area outside of which no graphic output is generated):

BGL_CLPSET : define an area in thè "virtual" piane outside
of which no graphic output is generated
("clipping" area);

BGL_CLPOFF : clear a defined "clipping" area.

The "clipping" area is not a "window" and does not coincide with

thw area defined to set an ATR.

It should be noted that thè "clipping" area is not defined at

thè start of a GT and that it is thè graphic output in thè

"virtual" piane which is saved om thè UGF, on request.

6.2. THE "VISUALIZATION" PHASE.

Page 28

Once thè graphic output is assumed as generated on thè

"virtual" piane, it is possible to visualize thè operations

performed by thè BGL System, figuring ali thè device screen, or

part of it, as a lens through which thè "virtual" piane could be

scanned.

It is now easy to understand that for thè "visualization"

phase it is necessary to individuate:

thè area of thè "virtual" piane to be visualized ("window"),

thè area of thè "device" piane where to visualize thè
graphic output ("viewport"),

thè coefficient of thè DTR.

Given thè "window", it is sufficient to give any one of thè

other two items in order to fix thè third one.

The BGL System assigns to "window", "viewport" and DTR

default parameter values, which are determined at thè

installation or reconfiguration time, for any declared device.

Por instance, thè default "viewport" is defined, in "SN" units,

by thè point coordinates (0,0) and (1,1), thè default DTR is

defined by thè scale factors for x and y axes introduced at thè

device installation or reconfiguration time, thè default "window"

is determined from thè default "viewport" via thè default DTR.

It should be clear from this example that thè DTR is not

necessarily unitary , since thè scale factor is usually 1 for

plotter type devices and 0.5 for videoterminals; therefore thè

initial "window" has a doublé area with respect to thè device

screen, in terminals of thè video type.

It should be noted that in standard videoterminals thè

Page 29

default viewport coincides with thè full screen while in devices

of thè plotter type it is possible to define a viewport larger

than thè default one, up to a maximum size defined at thè

installation or reconfiguration time. The user can know thè

maximum allowed viewport size entering thè subroutine BGL_DSZINQ.

To set a "window", thè user can enter thè following routines

which perforiti thè specified actions:

BGL_WINSET : set coordinate values (in "application"
units) for a new "window";

BGL_WiNDEF : reset thè default "window", which is
coincident with an area of thè physical
device and has thè origin coincident with thè
bottom left corner of thè physical device;

BGL_wiNINQ : return thè current "window" coordinates (in
"application" units).

To preserve thè BGL user friendly, thè coordinates for thè

selection of thè "window" on thè "virtual" piane are entered in

"application" units.

To set a "viewport", thè user can enter thè following

routines which perform thè specified actions:

BGL_VPCSET : set coordinate values (in "standard" units)
for a new "viewport";

BGL_VPSSET : set coordinate values (in "screen normalized"
units) for a new "viewport";

BGL_VPTDEF : reset thè default viewport.

BGL_VPCINQ : return thè current "viewport" coordinates (in
"st andard" unit s);

BGL_VPSINQ : return thè current "viewport" coordinates (in
"screen normalized" units);

Page 30

The doublé unit choice for thè "device" System is in function of

thè user purposes. However, since thè correspondence between

"SN" and "standard" units in thè "device" System is

device-dependent, thè routine BGL_DSZINQ is provided, which

returns thè physical device size (in cm) corresponding to one SN

unit.

If required, thè user can enter, instead of thè "viewport"

defining routines, thè following routines, which define a

"device" transformation and hence set thè "viewport" coordinates,

given a "window":

BGL_DTRSET : set thè specified transformation coefficients
and define thè new viewport by applying thè
new coefficients on thè current window;

BGL_DTRDEF : reset thè default transformation coefficients
and define thè new viewport by applying thè
new coefficents on thè current window.

BGL_DTRINQ : return thè coefficients of thè current
"device" transformation.

Moreover, three further peculiar performances leaving

unchanged thè current DTR are worth mentioning, which are thè

following:

BGL_WINWCT : set new "window" and determine new "viewport"
with thè old DTR;

BGL_VPSWCT : set new "viewport" (in "SN" units) and
determine new "window" with thè old DTR;

BGL_VPGWCT : set new "viewport" (in "standard" units) and
determine new "window" with thè old DTR;

Whichever thè choice is, thè user has a further possibility:

he can decide whether thè "window" has to be mapped onto thè

Page 31

"viewport", with device clipping area coincident with thè mappea

area, or if, on thè contrary, only thè origin of thè "window" has

to correspond to thè origin of thè "viewport". The user has

simply to enter coordinate values of two opposite corners or of

one only corner in thè "window" and/or "viewport" setting

routine, to select mapping or translation, respectively.

In both cases, thè user can request a return code number

(cfr. Sect. 5.4), to know whether thè defined viewport is

partially or completely out of thè device screen. Of course, thè

clipping is performed only on thè device screen surface which

intersects thè defined or computed "viewport".

Fig. 2, Fig. 3 and Fig. 4 summarize thè System performances

in thè "visualization" phase. Downward and upward arrows

indicate "set" and "inquire" statements, respectively.

TRANSFORM TO
VIRTUAL COORDINATO

TRANSFORM TO
APPLICATION COORDINATES

COMPUTE THE OPPOSITE CORNER OF
THE WINDOH IIITH THE CURRENT

VIEWPORT AND DTR

TRANSFORM TO
VIRTUAL COORDINATES

REDETERMINE OFFSET ON
THE CURRENT DTR

MAPPING ON THE CURRENT VIEìfPORT
TO DETERMINE DTR COEFFICIENTS

Fig. 2

TRANSFORM TO
STANDARD UNITS

DETERMINE NEW
DTR

MAPPING OF THE CURRENT WINDOW
ON THE NEW VIEWPORT

TO DETERMINE THE NEW DTR

TRANSFORM TO
STANDARD UNITS

DETERMINE NEW VIEWPORT
USING CURRENT WINDOW

AND THE NEW DTR

VPSINQ

i>
TRANSFORM TO

SN UNITS

DETERMINE VIEWPORT OPPOSITE
CORNER USING CURRENT

WINDOW AND DTR

REDETERMINE OFFSET
OF THE CURRENT DTR

DETERMINE VIEWPORT AS THE
INTERSECTION OF THE DEFINED
OR COMPUTED VIEWPORT WITH

THE DEVICE SURFACE

TRANSFORM TO
SN UNITS

DEFINE

WINDOW
(WINSET.WINDEF)

VIEWPORT
(VPCSET.VPSSET.VPTDEF)

DTR
(DTRSET,DTRDEF)

WINDOW
(WINWCT)

VIEWPORT
(VPCWCT.VPSWCT)

USE

VIEWPORT

WINDOW

WINDOW

DTR

DTR

COMPUTE

DTR
(MAPPING)

DTR
(MAPPING)

VIEWPORT

VIEWPORT

WINDOW

Fig. 4

Page 32

7. ON THE GRAPHIC CURSOR AND CURRENT POINT.

When thè System identifies a GT as "Interactive" (cfr.

Sect. 4.1.)i ali thè functions that allow thè use of a graphic

cursor (GC) are abilitateci. Of course, thè System does not

control thè GC, but it is thè user who decides when and where to

set active thè GC, where to move thè GC by hardware action, and

when to return thè control to thè program.

Once thè GC has been switched on, thè control can always be

returned to thè programm entering any key from thè display; it is

optional to return also thè ASCII code of thè returned key.

The following input and output functions can be performed in

a program:

BGL_GCUPGA : return thè coordinates (in "application"
units) of thè GC position;

BGL_GCUPGC : return thè coordinates (in "standard" units)
of thè GC position;

BGL_GCUPGS : return thè coordinates (in "SN" units) of thè
GC position;

BGL_GCUPSA : set thè GC at thè point of given coordinates
(in "application" units);

BGL_GCUPSC : set thè GC at thè point of given coordinates
(in "standard" units);

BGL_GCUPSS : set thè GC at thè point of given coordinates
(in "SN" units);

The first three functions can be used to set interactively

thè "window" (in "application" units) and thè "viewport" (in any

of thè possible units of thè "device" System). Moreover, it

should be noted that if thè Interactive device has no hardware

Page 33

for thè GC, a simulation can be performed by thè software.

A completely different nature has thè Current Point (CP),

which indicates where it is thè graphio pen, that is moved in any

graphio output generation. In thè BGL reference manual (BGL

3/85) any routine specification reports also thè position of thè

CP at thè end of thè routine execution.

The knowledge of thè CP position can reduce remarkably thè

number of parameters to be specified in subsequent calls of thè

BGL routines, and is also useful when character strings have to

be drawn, in sequence, on thè same graphic area. Also for thè CP

there are input and output functions which are:

BGL_MOVE : move thè CP to a point of given coordinates
(in "application" units);

BGL_VHERE : return thè CP coordinates (in "application"
units);

Page 34

8. ON THE GRAPHIC OUTPUT.

As just outlined in Sect. 1.1., thè main graphics library

performs only elementary graphic functions. Higher level

funotions can be found in thè BGLA library (BGLA 4/86). The

graphic output routines can be grouped as it follows, according

to their functions:

FI function: generate linear elements (vectors and arcs);

F2 function: fili an area;

F3 function: perforiti mixed FI and F2 type functions;

F4 function: clear an area;

F5 function: draw markers;

F6 function: generate text;

F7 function: perforiti special device-dependent functions.

Ali thè previous functions require coordinates in

"application" units, and their execution is controlied by means

of parameters ("attributes"), which are optional, i.e. are set

initially to default values, but can be modified by thè user,

when required. Each function has its own attributes, which can

be in common with other functions.

8.1. THE FUNCTION FI.

The BGL routines which perforili this type of function can:

BGL_LINE : draw a segment from thè CP (cfr. Sect. 7.)
to a given point;

Page 35

BGL_ARC : draw an are of a circumference, given thè
center coordinates (default value is CP), thè
starting point (default value is CP), and thè
angle of thè center-to-starting-point
direction to thè horizontal line passing
through thè center (default value is 360
degrees);

BGL_CLPBOX : draw a box around thè clipping area or, if
thè clipping area has not been defined,
ignore thè cali and return thè proper "return
code number".

8.2. THE FUNCTION F2.

This function can be performed only on those devices which

are of "raster" type (e.g., VERSATEC or LAIDO). Other devices of

"vectorial" type can perforiti this function only if supported by

specific hardware functions. Therefore, in thè following, thè

action of a routine is individuated either by "shade" or by

"fili", to distinguish between "shading" hardware functions

(e.g., VT125 or VT240) and "filling" hardware functions (e.g.

TEKTRONIX 4107).

with respect to other sofisticated graphics softwares, which

allow "patterns" of different types for thè filling of an area,

thè BGL System allows a filling with uniform gray intensity (if

possible, with uniform colour intensity) and a variation of thè

uniform intensity.

Specific performances of routines in this group are:

BGL_FIALSH : "shade" an area generated by thè projection
of a given segment (from CP to a given point)
on a given horizontal line;

BGL_FIAASH : "shade" an area generated by thè projection
of a given are (center, starting point and
radius given) on a given horizontal line;

Page 36

BGL_FIAREC : "shade" a box, given two opposite corners;

BGL_FIAPOL : "fili" a polygon defined by a given point
sequence.

Moreover, on some devices, such as RAMTEK 6211, thè following

routine can be executed:

BGL_FIAHRD : fili a polygon starting from a given internai

point.

8.3. THE FUNCTION F3.

Specific performances of thè routines in this group are:

BGL_BOX : draw a box, given a point and assuming as
opposite corner thè CP, and "shade" it, if
required;

BGL_CIRCLE : draw a circle, given thè center point and thè
radius (if thè x and y axes have different
scales, thè radius is taken on thè x scale),
and "shade" it, if required.

8.4. THE FUNCTION F4.

Specific performances of thè routines in this group are:

BGL_CLRGAR : clear ali thè graphic output in a box, given
two opposite corners of thè box;

BGL_CLPCLR : clear ali thè graphic output in thè clipping
area, or, if thè clipping area has not been
defined, ignore thè cali and return thè
proper "return code number";

BGL_CLRGSC : clear ali thè graphic on thè device screen,
and, if thè current device is of "raster"
type, feed paper, if required.

Page 37

8.5. THE FUNCTION F5.

Specifio performances of thè routines in this group are:

BGL_MARKER : draw a marker centered on a given point
(default value is CP).

Ali thè symbol actually avallatole can be found in thè BGL

reference manual (BGL 3/85).

8.6. THE FUNCTION F6.

For uniformity reasons, thè alphanumerio texts are always

software constructed, even if thè device has thè relative

hardware functions. Therefore, any character is generated as a

sequence of lines, taking generation tables ("fonts") as refence.

The "fonts" actually avallatole on thè BGL System are: thè

"normal font", thè "roman font", thè "Italie font", thè "script

font". Any "font" has its corresponding version in "greek font".

Moreover, exponents, suffixes and some mathematical symbols can

toe generated.

Examples of thè various "fonts" and how to select any of them

or how to perform a specific action can be found in an appendix

of thè BGL reference manual (BGL 3/85). The default "font" is

thè "normal" one. However, once a font has been selected by thè

user, it is it which is assumed as a default "font". Specific

performances of thè routines in this group are:

BGL_TXTSTR : generate on a graphic area an alphanumeric
text, given as a character string, or select

Page 38

BGL_TXTCIN

BGL_TXTCRE

BGL_TXTNUM

BGL_TXTLEN

thè font to be used henceforth ('\fx'="x
font", '\g'="greek" in thè font selected);

convert an integer number in a numeric string
and write it in an internai area;

convert a real number in a numeric string and
write it in an internai area;

generate on a graphic area a numeric string
previously built from a real or integer
number;

return thè length of a given string in
"character box" units.

It should be noted that thè exact positioning of a string in

a graphic area is made possible in thè BGL System by thè

introduction of two "displacement" parameters for x and y

coordinates. Once thè length of a string is known in "character

box" units, it is possible to let start thè string exactly where

desired, passing as routine arguments thè two necessary

displacements (in "character box" units), with respect to thè

given starting point.

8.7. THE FUNCTION F7.

At thè moment one only routine belongs to this group, i.e.

BGL_HARD. It performs thè hard-copy of thè graphic area of a

screen device on an associated printer. The devices with an

hard-copy facility are declared at thè installation or

reconfiguration time; thè user can enter a command of thè BGL

Command Language (cfr. Sect. 1.2.), i.e.

$ BGL SHOW devnam HARD

Page 39

to know thè order number which clxaracterizes thè printer

associateci to thè device DEVNAM.

8.8. THE FUNGTION ATTRIBUTES.

As anticipated in Sect. 8., thè graphic output functions

require "attributes", which assume System default values, if not

specified by thè user in thè subroutine arguments. If thè BGL

routines write a graphic output on a user graphic file, ali thè

"attributes", defaulted or not, are written on thè file, so that

later thè graphic functions could be executed. However, it is

also possible to change, in thè "visualization" phase (cfr.

Sect. 6.2.), some of thè "attributes" by means of specific

routines. In thè following, it is given a list of thè

"attributes" and of specific actions performed on them by thè BGL

routines.

i) The "line-type" attributo.

This attributo is shared by thè functions of FI, F3, F5 and

F6 type. Its initial default value is device dependent and is

assigned at thè installation or reconfiguration time. For

example, it is associated to gray levels in a VT125 terminal or

to thè thickness of thè line in a VERSATEC printer.

The BGL routines can perforiti thè following actions:

BGL_LININD : define a new default value for thè
"line-type" attributo;

BGL_LININQ : return thè current default value and thè
maximum number of possible values for thè
"line-type" attributo;

Page 40

BGL_LINPNT : modify thè assigned value of thè "line-type"
attributo in thè "visualization" phase.

ii) The "gray-level" attributo.

This attributo is used only by routines with thè function F2.

It fixes thè uniform gray (or colour) intensity for thè filling

of an area. The default value is device dependent and is

assigned at thè installation or reconfiguration time.

The BGL routines can perforiti thè following actions:

BGL_FIAIND : define a new default value for thè
"gray-level" attributo;

BGL_FIAINQ : return thè current default value and thè
maximum number of possible values for thè
"gray-level" attributo;

BGL_FIAPNT : modify thè assigned value of thè "gray-level"
attributo in thè "visualization" phase.

iii) The "marker-symbol", "marker-orientation", and "marker-size"

attributes.

Ali these attributes are associated to thè function F5 and

define, respectively:

The symbol to be used to generate a marker at a given point.
Its initial default value is 3, which corresponds to a
cross-hair symbol (+).

The rotation angle (in degrees) of thè symbol with respect
to thè positive x direction. Its initial default value is
zero.

The dimension of thè symbol to be drawn, measured in a
dimension unit which corresponds to about 0.5 cm on thè
"virtual" piane. Its initial default value is 1.

A BGL routines can perforiti thè following actions

Page 41

BGL_MARATT : modify thè current default value of some of
these attributes, or of them ali.

iv) The "text-orientation" and "text-size" attributes.

Ali these attributes are associated to thè function F6 and

define, respectively:

The rotation angle (in degrees) of a string with respect to
thè positive x direction. Its initial default value is
zero.

The dimension of thè character to be drawn, measured in a
dimension unit which corresponds to about 1.0 cm on thè
"virtual" piane. Its initial default value is 1.

A BGL routines can perform thè following actions:

BGL_TXTATT : modify thè current default value of one of
these attributes, or of them ali.

v) The "picture-identifier" attributo.

This attributo is related to ali graphic output functions.

Its value has a meaning only when its related output functions

are written on a UGF. Actually, thè routines which recali a UGF

(BGL__SVEXEC and BGL_SVMIMA) could allow thè selection of only

those graphic outputs with thè given "picture-identifier"

attributo. Therefore, it is possible, in thè "visualization"

phase, to select parts of a graphic output, to merge two or more

graphic outputs, to visualize thè graphic output in an order

reversed with respect to thè generation one, etc... Its initial

default value is zero.

A BGL routine can perform thè following action:

Page 42

BGL_PICIND : modify thè current default value of thè
"picture-identifier" attributo.

The Fig. 5 rapresents thè selection criterion for thè

visualization of a graphic output, with respect to different

values of thè "picture-identifier" attribute. In this figure, PD

is thè "picture-identifier" specified as an argument of

BGL_SVEXEC and/or BGL_SVMIMA (default value is 0), whereas PR is

thè "picture-identifier" associated with thè graphic output at

thè generation phase.

The Fig. 6 summarizes ali thè steps performed when a graphic

output operation is executed.

PR<0 PR=0 PR>0

PD<0 PD = PR NO NO

PD = 0 NO YES YES

PD>0 NO YES

Fig 5

GRAPHIC OUTPUT

SET DEFAULT VALUES FOR
UNSPECIFIED ATTRIBUTES

GRAPHIC OUTPUT FROM UGF

NO

GIVEN IDENTIFIER
EQUALS

READ IDENTIFIER?

NO

YES

1 YES

TRANSFORM THE COORDINATES
FROM APPLICATION SYSTEM

TO VIRTUAL SYSTEM

IS UGF OPEN ?
(WR1TING)

N O)

REAL OR "NULL"
DEVICE ?

"NULL" '

YES

IfRITE ON UGF
1) FUNCTION CODE
2) COORDINATES AND
3) ATTRIBUTES

REAL

TRANSFORM THE COORDINATES
FROM VIRTUAL SYSTEM
TO DEVICE SYSTEM

WR1TE ON THE OGF SET ON THE DRIVER"]

Fig.

Page 43

9. ON THE COLOUR TABLES.

In thè devices with colours, thè "line-type" and "gray-level"

attributes (cfr. Sect. 8.8.), identify thè selected colours for

lines and areas, respectively. Of course, thè colour number is

device dependent and is identified by a number, which is called

thè color index. The number O is associated to thè background,

thè other numbers, up to a fixed N, are foreground colours. The

characteristics of any number-associated colour are defined by

means of a table, called thè look-up table (LUT).

The BGL System allows a device-dependent number of LUT's, thè

first of these LUT's, defined at thè installation or

reconfiguration time, is thè initial default LUT. The user can

utilize one of these LUT's or even define new LUT's up to thè

maximum number of 64, if thè current device has thè required

resolution. Furthermore, thè BGL routines allow also thè passage

from a RGB System (Red, Green, Blue) to a HLS System (Hue,

Lightness, Saturation), when defining a LUT.

To summarize, thè BGL routines can:

BGL_HLSRGB : convert a given LUT from HLS System to RGB
System;

BGL_RGBHLS : convert a given LUT from RGB System to HLS
System;

BGL_LOOCNT : create a new LUT which has ali thè colour
indexes set to zero;

BGL_LOOMTE : modify one by one ali thè colour indexes of
an existing LUT.

BGL_LOORTE : return thè intensity of thè three fundamental
colours corresponding to a given color index
and to a given LUT.

Page 44

BGL_LOOINQ : return thè (fixed) number of foreground
colours available on thè current device
and thè current number of LUT's;

BGL_LOOSET : set on thè screen a given LUT (a device
hardware function is activated).

Page 45

APPENDIX A - How To Instali BGL On a VAX/VMS System.

1. Introduction

The following procedure will instali BGL on your VAX/VMS

System, starting from a "BACKUP/SAVE_SET" supplied file. The

System manager privileges are required.

To start thè procedure, you have to type some DCL commands

and, then, load and execute a command procedure, that will

"bootstrap" and control thè remainder of thè installation.

The main installation procedure, started automatically by thè

"bootstrapping" procedure, will compile and link ali thè BGL

modules and will create ali thè image files needed by user in

order to run thè BGL routines.

Moreover, thè procedure will ask you for Information about

your specific site configuration. You will be prompted about ali

thè device types for which software interfaces are currently

available. For each of these, you will be requested to enter

Information about thè device characteristics and thè names of thè

physical peripherals. A suitable and complete on-line "help"

feature will guide you to answer correctly everything (in any

case, in order to avoid mistakes, it may be useful for you to

have prepared, before starting, a note containing thè main

Information, such as thè physical names of ali thè graphics

peripherals, etc...).

When thè installation procedure is finished, you will have to

perforiti some final operations, in order to make thè BGL System

executable.

Page 46

2. Defining thè input backup medium

First of ali it is necessary to define thè backup input

device name. The "SAVE_SET" file may reside either on magnetic

tape or on any other Files-11 Level 2 structured device. In this

last case it may also reside on a volume of a remote node. You

must create a logicai name, BGK_DEV, by typing

ASSIGN name BGK_DEV

If thè backup medium is a magnetic tape, "name" specifies only

thè device name; otherwise, if thè SAVE_SET file resides on a

disk, "name" specifies thè disk drive name and thè directory

name; if thè disk is in a remote node, thè disk name must include

thè node name.

Examples :

ASSIGN MT: BCK_DEV (magnetic tape)

ASSIGN DRA2:[DIRNAM] BCK_DEV (locai disk)

ASSIGN NORAD::DRA2:[DIRNAM] BCK_DEV (disk of thè remote

node NORAD)

3. Defining thè BGL disk name

Next, you have to create thè logicai name BGL_DISK in order

to define thè name of thè disk on which ali thè BGL files will

reside. Type

ASSIGN name BGL_DISK

EXAMPLE : ASSIGN DQAO: BGL_DISK

NOTE :

It is important that no directory named [BGL] already

Page 47

exists on this disk.

4. Loading thè "bootstrapping" procedure

Having defined thè input and output device names, now you can

load thè first procedure, that will create thè main directory and

ali thè subdirectories for thè BGL files. Moreover, this

procedure will load thè main installation procedure from thè

backup medium and will create some other necessary logicai names

and symbols.

If thè backup medium is a magnetic tape you must mount thè

tape before invoking thè BACKUP command. Type thè following

MOUNT/FOREIGN tape-drive-physical-name DUMMY

BACKUP/REWIND BCK_DEV:BGL.BCK/SELECT=[BGLN.SERVICE]BOOT.COM

TEMP.COM

Otherwise, if thè SAVE_SET files resides on disk, you must type

BACKUP BCK_DEV:BGL.BCK/SAVE/SELECT=[BGLN.SERVICE]BOOT.COM

TEMP.COM

5. Running thè "bootstrapping" procedure

You have just created a command file in your default

directory, named TEMP.COM This is a temporary file and will be

automatically deleted later. Now you must run this procedure by

typing

©TEMP

This step takes about 3 minutes. If some error occurs during

this procedure execution, either because thè procedure attempts

Page 48

to create some directory which already exists, or due to some

mistake in typing thè quoted logicai names definitions, thè best

way is to correct thè error, log-out of your session, log-in

again and restart thè installation procedure from thè beginning.

6. Starting thè main installation procedure

After thè "boostrapping" procedure is finished, thè main

installation procedure is activated automatically, and starts by

compiling and linking some basic generai service modules. Each

module name is displayed on thè screen, so that, if an error

occurs, it is easy to recognize thè name of thè module which has

produced thè error.

7. Configuring each device type in your System

The next step performed by thè procedure is to get

Information about thè graphics peripherals installed in your

System, in order to tailor BGL to your own environment. The

procedure reads an internai list which contains thè names of ali

thè device types for which software interfaces are currently

available and, for each of these, displays a prompt string, like

thè following

BGL INSTALL devname>

where "devname" is a device type name, whose meaning is easily

understandable (such as VT125, VERSATEC etc...).

If no peripheral of this device type is installed in your

site, answer thè prompt with a "carriage return" (<CR>); this

Page 49

answer causes thè procedure to go alleaci to ask Information about

thè next device type.

Otherwise, if thè prompted device type is present in your

System configuration, you nave to enter ali thè necessary

Information about it. To do this, consider that thè procedure

has built up, and has entered into, a "BGL command language",

whose purpose is to allow an easy and efficient way of

communication between user and System. The use of this BGL

command language is fully explained elsewhere.

Moreover, you can give correctly any Information by using a

very suitable and complete on-line "help" feature: if you enter

a question mark (?), you can get full explanation about thè names

and thè meaning of thè commands and parameters you are allowed to

enter. To exit from "help", enter a <CR>.

The most important Information you have to communicate is

about thè names of thè lines connected to thè graphics

peripherals (such as TXA3:, LVAO: ete..). To do this, you must

use thè ADD_LINE command.

If thè selected device type is a video terminal provided with

a hard-copy device, enter thè ADD_HARD command.

If you have made some errors in writing thè line names, you

can use thè REM_LINE or REM_HARD commands in order to remove thè

wrong names.

The commands DEC_NUM and DEC_TYPE should be normally used

only if thè selected device type is an Interactive video terminal

and it is not a Digital standard peripheral.

The PHYSICAL_PARAM. command is called in order to modify

some values of thè physical parameters associated to thè current

Page 50

device type. This command must be followed by a sub-command,

whose name may be DISPLAY or MODIFY: thè DISPLAY sub-command is

useful to read thè standard and current values of each parameter

and thè associated parameter number, whereas thè MODIFY

sub-command is called to change parameters values. Normally

standard values are adequate and you have not to modify anything.

Only in very rare cases, especially when there are different

models of thè same device type, you need to modify some

parameters in order to tailor them to your specific model (as an

example, there are several models of Versatec printer-plotter,

with different densities of "nibs" per inch). Moreover, some

parameters are not modifiable, by definition; some other

parameters have no meaning for thè device type you are dealing

with and can not be set or modified. In conclusion you have not

to spend much time to process this part of thè procedure!

However, remember that two parameters have to be set

according to thè needs of your computer centre:

1) OFFSET IN X-DIRECTION ...

If this parameter is set to a value greater than zero (valid

only for non-interactive plotter devices) a label with thè

username and thè date will be written at thè beginning of each

plot. If thè computer users are not many, this label may be

not necessary

2) AUTOMATIC OUTPUT ON DEVICE

This parameter controls whether a non-interactive plot is

immediately drawn on thè device, or it is hold on a disk file

until it is released by means of a specific command. This

choice may depend on several conditions; as an example, a

Page 51

planar plotter which accepts only single sheets of paper, must

be prepared everytime before receiving a plot eto...

The LOOK_UP_TABLE command is structured exactly as thè

PHYSICAL_PARAM. command, with thè same subcommands. Of course

it must be used only if thè device is a colour video or plotter,

provided with look-up tables. Remember that thè VT125 Digital

video terminal does have look-up tables and it is provided with

RGB output channels for colour monitore.

Vhen you think to have already given ali thè necessary

Information about thè selected device, enter a <CR> to go ahead

and configure thè next device type. If you have made some error,

or have entered a <CR> too early, it does not matter: when thè

installation procedure will be finished, you can correct thè

errors by using thè BGL command language, in particular by

calling thè CONFIG command'.

Before prompting you for thè next device Information, thè

procedure compile ali thè source modules of thè related software

interface routines. This operation is performed only if thè

selected device is configured in your System, that is, at least

one connected line has been declared.

8. Creating thè device-independent routine shareable image

A subdirectory of [BGL] contains thè primitive

device-independent routines. They are thè only user callable

routines of BGL and need to be linked to thè device-dependent

routines and to thè service shareable images. When ali thè

devices have been configured, thè procedure performs this step,

Page 52

which is also thè last one, and creates thè main BGL shareable

image (to be linked by thè user programs).

9. Final operations

The procedure execution takes about 30 minutes, longer on a

busy VAX (if you do not think about thè answers to thè prompts

for too long!).

Vhen thè procedure is finished, you have to do few conclusive

operations:

1) Insert thè statement

@SYS$MANAGER :BGLSTART

at thè end of your System startup procedure. The file

SYS$MANAGER:BGLSTART.COM is created (or modified) by thè BGL

System everytime something has been modified in thè device or

software configuration. It contains ali thè commands needed

to define thè System logicai names used by thè BGL routines

and to set thè graphics terminal characteristics.

2) Insert thè statement

BGL:==@BGL_DISK:[BGL.SERVICE]BGL

into thè System login procedure. This is thè only symbol

assignment needed in order to run thè whole BGL System.

3) Finally, in order to make thè BGL System operating, shut-down

and then reboot thè System.

Page 53

APPENDIX B - The Main Graphics Library.

Subroutines which terminate thè current Graphic Task.

BGL_CLOSE : Close thè GT without changing thè assigned
device.

BGL_NEWDEV : Close thè GT and assign a new device.

Subroutines which control thè alphanumeric text.

BGL_STAMOD : Piace thè terminal in alphanumeric mode.

BGL_APLDEF : Define thè area where to display alphanumeric
text.

BGL_ALPCLR : Clear thè alphanumeric text from thè defined
area.

BGL_CLRASC : Clear thè alphanumeric text from thè screen.

Subroutines which control thè "application" transformations

(cfr. Sect. 6.).

BGL_ATRDEF : Set thè default transformation coefficients.

BGL_ATRSET : Set thè specified transformation coefficients.

BGL_ATRMAP : Define thè mapping from thè current
transformation onto thè wanted one.

Subroutines which control thè "device" transformations

(cfr. Sect. 6.).

BGL_DTRDEF : Reset thè default transformation coefficients and
define thè new viewport by applying thè new
coefficents on thè current window.

BGLJDTRSET : Set thè specified transformation coefficients and
define thè new viewport by applying thè new
coefficients on thè current window.

Page 54

BGL_VINDEF

BGL_WINSET

BGL_VPTDEP

BGL_VPCSET

BGL_VPSSET

BGL_WINWCT

BGL_VPSWCT

BGL_VPCWCT

Reset thè default window and compute thè new
transformation coefficients by mapping thè new
window onto thè current viewport.

Set thè specified window and compute thè new
transformation coefficients by mapping thè new
window onto thè current viewport.

Reset thè default viewport and compute thè new
transformation coefficients by ' mapping thè
current window onto thè new viewport.

Set thè specified viewport (with coordinates in
"standard units") and compute thè new
transformation coefficients by mapping thè
current window onto thè new viewport.

Set thè specified viewport (with coordinates in
"screen normalized units") and compute thè new
transformation coefficients by mapping thè
current window onto thè new viewport.

Set thè specified "window" and determine thè new
"viewport" with thè old DTR;

Set thè specified "viewport" (in "SN" units) and
determine thè new "window" with thè old DTR;

Set thè specified "viewport" (in "standard" units)
and determine thè new "window" with thè old DTR;

Subroutines which control thè clipping rectangle.

BGL_CLPSET : Set a clipping area at thè specified boundary,

BGL_CLPOFF : Remove thè clipping area.

Subroutines which control thè colour tables.

BGL_LOOCNT

BGL_LOOMTE

BGL_LOORTE

BGL_LOOSET

BGL HLSRGB

Allocate a new look-up table.

Modify an element of thè specified look-up table,

Read an element of thè specified look-up table.

Load thè specified look-up table.

Convert a colour specification from HLS to RGB.

Page 55

BGL_RGBHLS : Convert a colour specification from RGB to HLS.

Subroutines which allow Interactive use of thè Graphic Cursor

(GC).

BGL_GCUPGA : Return thè GC point in "application unit"
coordinates.

BGL_GGUPGG : Return thè GC point in "standard unit"
coordinates.

BGL_GCUPGS : Return thè GC point in "screen normalized unit"
coordinates.

BGL_GCUPSA : Move thè GC to thè point specified in
"application unit" coordinates.

BGL_GCUPSC : Move thè GC to thè point specified in "standard
unit" coordinates.

BGL_GCUPSS : Move thè GC to thè point specified in "screen
normalized unit" coordinates.

Subroutines which control thè current point (CP).

BGL_MOVE : Move thè CP to thè specified point.

BGL_WHERE : Return thè coordinates of thè CP point

Subroutines which draw linear elements.

BGL_LINE : Draw a straight line.

BGL_ARC : Draw an are of thè specified length.

BGL_CLPBOX : Draw a box along thè boundary of thè given
clipping area.

Subroutines which fili a selected area.

BGL_FIAASH : Shade an are to thè specified horizontal line.

Page 56

BGL_FIAHRD : Flood polygons with a solid colour
(device-dependent function).

BGL_FIALSH : Shade a line to thè specified horizontal line.

BGL_FIAPOL : Fili any type of polygon defined by a sequence of
vertex coordinates.

BGL_FIAREC : Fili a rectangular area.

Subroutines which draw closed lines and fili thè internai area,

if required.

BGL_BOZ : Draw a box and fili it, if required.

BGL_CIRCLE : Draw a circle and fili it, if required.

Subroutines which clear graphio objects from selected areas.

BGL_CLPCLR : Clear ali graphic output in thè clipping area.

BGL_CLRGAR : Clear ali graphic output in thè specified area.

BGL_CLRGSC : Clear ali graphic output on thè screen, or
advance paper, if thè current device is a graphic
printer).

Subroutines which draw a graphic text.

BGL_TZTSTR : Draw a text string.

BGL_TXTCIN : Convert an integer number to a decimai text
string and save thè string in an internai memory
area.

BGL_TXTCRE : Convert a real (floating point) number to a
decimai text string and save thè string in an
internai memory area.

BGL_TXTNUM : Draw thè number previously converted to a text
string.

BGL_MARKER : Draw a special symbol centered at thè specified
point.

Page 57

BGL_TXTLEN Return thè length of
'character box" units.

a given string in

Subroutines which save or restores pictures.

BGL_SVINIT

BGL_SVCLOS

BGL_SVMIMA

BGL_SVEXEC

BGL_HARD

Initialize thè specific User Graphic File (UGF).
Ali thè subsequent graphic operations will be
saved in thè UGF.

dose thè UGF opened with a cali to BGL_SVINIT.

Computo boundary coordinates of a picture
previously saved in a UGF.

Display pictures previously saved in a UGF.

Print thè screen imago on thè defined "hard-copy"
printer (device dependent function).

Subroutines which control thè function attributo (cfr.

Sect. 8.6.).

BGL_LININD

BGL_LINPNT

BGL_FIAIND

BGL_FIAPNT

BGL_PICIND

BGL_MARATT

BGL TZTATT

: Set thè default LINE_TYPE attributo value.

: Redefine a LINE_TYPE attributo value.

: Set thè default GRAY_TYPE attributo value.

: Redefine a GRAY_TYPE attributo value.

: Set thè default PICTURE IDENTIFIER attributo
value

: Set thè default MARKER attributo value

: Set thè default TEZT attributo value.

Subroutines which inquire for...

BGL_ATRINQ

BGL_DTRINQ

...thè coefficients of thè current "application"
transformation

...thè coefficients of thè current
transformation

"device1

Page 58

BGL_DEVINQ

BGL_DSCINQ

BGL_DSSINQ

BGL_DSZINQ

BGL_LININQ

BGL_FIAINQ

BGL_LOOINQ

BGL_VPCINQ

BGL_VPSINQ

...thè name of thè current device

...thè coordinates of thè boundary of thè
physical viewport (in "standard units")

...thè coordinates of thè boundary of thè
physical viewport (in "screen normalized iinits")

...thè device coordinates in "standard units"
corresponding to thè value 1 in "screen
normalized units"

...thè current default of thè LINE_TYPE attributo
value and thè maximum number of values allowed at
thè current device

...thè current default of thè GRAY_LEV attributo
value and thè maximum number of values allowed at
thè current device

...thè current look-up table and thè maximum
number of defined look-up tables

...thè coordinates of thè boundary of thè defined
(or computed) viewport, in "standard units"

...thè coordinates of thè boundary of thè defined
(or computed) viewport, in "screen normalized
units".

Page 59

APPENDIX C - The Basic Calcomp Software Interface.

Subroutines wliich perform basic functions.

PLOTS : Initialize a new Grapliic Task (GT).

PLOT : Draw a straight line, or move thè current point,
and/or redefine thè axis origin, or close thè
current GT.

FACTOR : Enlarge or reduce thè size of thè subsequent
picture object.

NEWPEN : Select a different line type.

NUMBER : Convert a floating-point number to thè decimai
equivalent string and draw thè string.

SYMBOL : Draw a text string.

WHERE : Return thè current point coordinates.

Subroutines which perform more complex functions.

SCALE : Compute scale factors to process unscaled data
with LINE and AXIS.

AXIS : Draw a positioned axis line with labels, scale
annotations and tick marks.

LINE : Plot points from coordinate data arrays.

CURVE : Draw a smooth curved line trough a set of
user-defined coordinate data points.

Page 60

APPENDIX D - The Terminal Management Library.

Subroutines which are effective on any type of terminal.

BGL_VTBELL

BGL_VTCLOSE

BGL_VTNOBRD

BGL_VTNOECH

BGL_VTREAD

BGL_VTWIDTH

BGL_VTVNUM

BGL_VTVNUMB

BGL_VTWNUMZ

BGL_VTVRAP

BGL VTWRITE

: Ring thè beli one/more time.

: Restore initial conditions.

: Set/reset thè NOBROADCAST characteristica.

: Set/reset thè NOECHO characteristics.

: Read, a character string from thè terminal
keyboard.

: Define thè character number on each imput/output
line.

: Vrite an integer number.

: Vrite a right justified integer number into a
fixed length field.

: Vrite a right justified integer number into a
fixed length field and fili thè field with
leading zeros.

: Set/reset thè WRAPAROUND characteristics.

: Vrite a text string.

Subroutines which are effective only on terminals conform to

ANSI standard, such as DEC VT100.

BGL_VTATTR

BGL_VTVTCGET

BGL_VTCHTM

BGL_VTCSAVE

BGL_VTCREST

Turn on/off thè REVERSE, BLINK,
UNDERSCOPE attributes.

BOLD and

Return thè alphanumeric coordinates of thè
cursor location.

Move thè cursor along a line.

Save thè cursor position and thè character
attributes in thè video locai memory.

Restore thè cursor position and thè character
attributes saved in thè video locai memory.

Page 61

BGL_VTCSET

BGL_VTCVTM

BGL_VTDOUBH

BGL_VTDOUBW

BGL_VTEDOUB

BGL_VTEAREA

BGL_VTELINE

BGL_VTESCRN

BGL_VTGETCH

BGL_VTGRAF

BGL_VTGRID

BGL_VTGRINP

BGL_VTLEDS

BGL_VTM132

BGL_VTMKEY

BGL_VTMREV

BGL_VTMWRAP

BGL_VTRNUM

BGL_VTSCRLL

Move thè alphanumeric cursor to thè specified
looation.

Move thè cursor along a column.

Write a double-height, double-width line.

Write a single-height, double-width line.

Restore thè normal size of a line.

Erase a defined area on thè screen.

Erase a line partially or completely.

Erase thè screen partially or completely.

Read a character and return its ASCII code.

Select/remove thè Special Graphics Set.

Draw a box with any number of internai segments.

Enable thè operator to move thè cursor and
return thè cursor final location.

Turn on/off thè leds on thè terminal keyboard.

Set/reset thè 132 COLUMNS mode.

Set/reset thè KEYPAD APPLICATION mode.

Set/reset thè REVERSE VIDEO mode.

Set/reset thè WRAPAROUND mode.

Read an integer number from thè terminal
keyboard.

Define thè video scrolling area.

