INTERNAL SCLUTIONS FOR A RIGIDLY RCTATING PRESSURELESS BODY

Bergamini, R. L 7/24
LRA 8/75



ABSTRACT - In this paper is described a method by which an infinity
of internal solutions for a rigidly rotating pressureless body could
be explicity derived, and a particularly simple solution is briefly

described.



So far the general properties of rotating fluid masses

have been studied by Boyer(l), and variational principles

for the structure and equilibrium of such masses have been
given by Hartle and Sharp(z) and by Bardeen(s). The structu-
re of uniformaly rotating relativistic disk has been investi-

(4)

Following the work of Kerr(G), the exterior metric has been

gated by Bardeen and Wagoner and by Salpeter and WagonerG).
the object of many investigations whilst the only internal
solutions presently known are the van Stokum's(7) solution
- and Wahlquist's solution(g). (For a general review of the
problem of rotating bodies in G.R. and for a more complete
bibliography see.Thorne(g). The solution of van Stokum de-
scribes an infinite, pressureless, rigidly rotating cylinder
and the Wahlquist's solution seems to describe a body rota-
ting under the influence of external matter because, in it,
surfaces of constant pressure are prolate instead of being
oblate, as one should expect for a freely rotating body.

The purpose of this paper is to obtain some information
about the internal solutions of a rotating body.

" Due to the mathematical complexity of the general pro-
blem only rigidly rotating pressureless bodies will be con-
sidered. In such a case, as Ehlers (10) has shown, the deter-
mination of all the interior solutions is equivalent to the
construction of all static exterior solutions. If the rota-
ting body is furthermore assumed to be axially symmetric also
the exterior metrics which correspond to interior solutions
will be axially symmetric. In this case to the exterior metrics
may be given the Weyl form and will be possible, integrating

the equations which connect the exterior static metrics and the



interior stationary ones, to obtain an expression by which .an infinity
of exact analitical interior solutions could, in principle, be expli-
city obtained.

In this paper no attempt will be made to study in details such
solutions, only a particularly simple solution will be briefly descri-
bed because, in such a solution, surfaces of constant density are finite

oblate surfaces.

The line element describing in a comoving reference frame an axially
symmetric rigidly rotating pressureless body has been given by van
Stokum as

2

ds2 = ezw (drz + dzz) + rzde - (Mds - dr)2 €9)]

where ¢y , M are functions of r, z.

The units of measure have been chosen such to make ¢ = 873G = 1; z, r,
6 are cylindrical coordinates and the axis z has been identified as
the axis of symmetry. Because the body is assumed to be pressureless the

field equations are simply
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where ¢ 1s the density of energy.

The equation (5) is the integrability condition of the equations (3)
aﬁd (4) so, once a solution of the equation (5) has been found, a direct
integration of the equations (3) and (4) gives y. The equations (2) and
(6) are identical,'as‘may be seen using the expression given by the
equations (3)'and,(4) to compute BZM/ar2 + aZM/azZ. The equation (6)
gives the density distribution once M and ¢ are known. Therefore the
solution of the field ecquations depends only from the solution of the

equation (5).

There is no particular difficulty in obtaining special solutions
of the equation (5). For instance van Stokum assumed M to be a function
only of 1 then the equation (5) gives M = ¢ rz, wifh a a constant.
But to find a general solution of these equations it is convenient to
use the theorem proved by Ehlers and previously quoted. Before using
the theorem it is advisable to change the coordinate system from cylin-
drical coordinates r, z, 98 to oblate spheroidal coordinates p, ¢, 6.
The coordinates r, z are defined in function of the new coordinates

us; 4, 0, b)’
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= A sinh u sin ¢ ) (8)

In the plane (r; z), lines of constant y describe ellipsoid of major
axis Acosh pand minor axis Asinh p. The curves ¢ = constant are hyper-
boloids of one sheet. The focuses of both ellipsoids and hyperboloids
are on the axis r with distance 2A between them. In 3 dimensions, ro-
tating the'plane (z, r) around the axis z, the ellipsoids change to oblate

spheroids and the hyperboloids to hyperboloids of rotation. To simplify

further the equations A will be put equal to 1 and cosh y, sinh pu, sin e,éos 6, will

be respectively indicate by C, S, o, y. In oblate spheroidal sigma co-

ordinates the line element (1) and the field equations (2) - (6) beca-
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where M = M (u, ¢), v = v(u, ¢), and e” = e (8° + o).
Because of the axial symmetry to the corresponding exterior metric

could be given the Weyl form with line element
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where U = U (u, ¢).
The field equations are
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The equations connecting the interior and the exterior metric in this case

are simply:
3U M
20y — = — 20)
Yom e (20)
2Cy U _ M 21)

Eff; 3u



It is easy to see, using the equation (20), (21), that the equations
(10) - (11) are identical with the equations (16) - (17); the équa~
tion (14) giving the density distribution has, of course, no counter-
part in the field equation for the static exterior metric.

Thus to obtain solutions for the interior metric instead of sol-
ving the system of equations (10) - (14) it is possible to solve the
equation (19) and then to integrate the equations (20) - (21), get-
ting so M. | :

The equatioﬁ (19) is the Laplace equation in oblate spheroidal
coordinates and, because U does not depend from 6, the general solu-

tion of the equation (19) is given by(ll)
U={aP @ +bQ @ {[cp G -da G} (22)

~ where a_ s bn’ ¢ » are constants, and Pn (o), Qn (o) are the Legendre.
polynominals of first and second kind with real argument,Pn (iS), Qn (1S)
are the Legendre polynominals of first and second kind with imaginary
argument and n is an integer # O. The equation (18), with U given by

the expression (19), may be solved (see the appendix) to give
_ 2 1 1 . 1 . 1 .
M= nm+D) C,Y{anpn )+ ann (o} tepfn @9+ ann ()} (23)

| where Pi (o), Qi (o), Pi (1S) Qi (1S) are now associated Legendre



\
functions. It may be noted'that the equation (13) is linear and
therefore a linear combination of the solutions given by the expres-
sion (23) is still a soluiion of the equation (13), whilst the
equations (10) and (11), which define v, are not linear. So, if

two different solutions(vl, Ml), (vz, Mz) are given, the linear
combination of Ml’ and MZ is still a solution of the equation (13),
but the integration of the equations (10), (11) will give a v, in

general, different from a linear combination of vy and,vz. The den-

sity has, of course, a behavious similar to v because the equation

(14) is not linear.

The van Stokum solution is recovered by putting n = 1 bn =a =

= 0 in the expression (23). In fact in this case the (23) gives

M= aCZYZ | (24)

a is a constant.

By integrating the equations (10) and (11) one obtains

2.2 2
eZv = Cy (SZ . 02) (25)

so that the line element (9) is given by
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or, in cylindrical coordinates, by

2.2
as? = T (ar? + aeD) + rPae® - (urlde - a6y’ )

which is precisely the van Stokum's solution in a comoving reference frame.
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A
Special solution

There are solutions for the interior metric which are not described
by the expression (20). For instance, assuming n = O in the expres-
sion (22), we have solutions for the exterior static metric, but

the expression (23) has no meaning for n = O. In this case; anyway,
it is still possible to obtain internal solution integrating directly

the (18). For instance assuming

U=q cot 'S

o, as usual, is a constant, the equations (20), (21) are

oM

T =-2a

¢ Y
which, once integrated, give

M=RBgo

with B = 2o.

In such a case the integration of the equation (10) and (11) gives

the density by the equation (13) is then

(28)

(29)
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When g = 2 the density assumes the particularly simple form
4
e (34)
(SZ + O2)2
To determine the surfaces of constant e, being the system axially
symmetric, it is sufficient to study the expression (30) in a plane
through the axis of symmetry. Choosing the plane 6 = O, thar-in this
plane (i.e. the plane passing through the axis z and the focuses)
between the coordinates C ,yand the cylindrical coordinates r, 'z are
valid the relations
(+ D7+ 28 =+t (35)
-1+ 2% = - (36)
So the equation (36) becames
2 2
Lot @t (37)

For the equation (37) the density is constant at the surfaces obtained
rotating the curves described by the equation (37), which are Cassini's

ovals, around the axis r.
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APPENDIX’

The simplest way to show that the expression (23)
follows from the expression (22) is to show that the
equations (20) and (21), which connect the exterior
static metric with the interior stationary one, became
identities when M and U are substituted with their
expressions (22) and (23) respectively.

Now assuming ¢ and S as independent variables; ﬂﬁ:equa—
tions (20) and (le became
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Then using for U the expression (22) the equation (Al) is
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So the equation (Al) is an identity.

Analogously using the expression (23).
i

oM _ 2 o2y [, pl e o
3S n(n + 1) (1 o) l?npn (6) + b Q (U)QKZZ -
ARDRE T I (R SRR B
\f P z) +d Q ( Z}+ (z"- 1) = gfnpn(z) + ann(A?g (A8)
For the relations
- __,qg(ﬂ _ 1 ~ 1
(Z 1) nFE (z) (n +1) 7z P (z)
2, d den(z) _ . 1 i 1
@ - 1) —¢ ne.,, @ -m+1)zae )
Together with
P! (2) = 2P (z) + (n+1) (z° - 1)? p_(2)
n+1 n n ‘-z
F @m ez @ @t oD@
n+1 n “n
oM 2.1 1 1 i

as T2 T o7 R, (@) % ()] )

+ ann (Z)J | (A9)

Whilst using the expression (22)
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But
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Comparing the equation (A10) and (A9) it is easy to see

that also the equation (A2) is an identity.



