A Basic Class Architecture for
Data Acquisition in Astronomy:
I - Requirements and Analysisf

F. Palagi' and G. Comoretto?

LIRA - INAF, Sezione di Firenze, l.go E. Fermi 5, 50125 Firenze (Italy)
2 Osservatorio Astrofisico di Arcetri - INAF, l.go E. Fermi 5, 50125 Firenze (Italy)
IRA Technical Report n.° 385/06
Firenze 20/02/2006

Version of February 22, 2006

tsource: /palagi/strumenti/basearch/doc/analysis/analysis.tex

Contents

1 The requirements 9
1.1 The Telescope e 10
1.2 The Detector 11
1.3 The Archiving System L. 11
1.4 The Logsystem 12
1.5 The Command interpreter 12
1.6 TheDisplay 12
1.7 The Businessmodel 12

2 Requirement analysis 17
2.1 The Object Model 17

2.1.1 Detector 17
2.1.2 Observation type 19
2.1.3 Atomic Operation 19
214 Image e 20
215 ImageData L 20
2.1.6 Image Description, 20
2.1.7 Telescope 21
2.1.8 Archive 21
2.1.9 LogSystem 22
2.1.10 CommandInterpreter, 22
2.1.11 Command e 23
2.1.12 Vocabulary 23
2.1.13 Source e 24
2.1.14 Position 24
2.1.15 Clock e 24
2.2 Behaviour specifications 26
221 Actors 26
2.2.2 Command Input L 26
2.2.3 Use-case: Observation 28
2.2.4 Use-case: Select a source 31
2.2.5 Use-case: Set-up 31
2.2.6 Use-case: Pointing 33
2.2.7 Use-case: Tracking 33
2.2.8 Use-case: Measurement 35

2.2.9 Use-case: Output,

2.3 Maintenance

2.3.1 Use-case: System Monitoring

Abstract

Astronomical observations are carried out using instrumentation (mainly detec-
tors and telescopes) whose characteristics changes according to the spectral win-
dow involved. However there are still lot of common features, which are indepen-
dent of the spectral window involved.

While developing data acquisition programs for some radioastronomical in-
struments built in Arcetri, these common aspects showed up clearly.

This report is the first of a series of reports that describe the Object Ori-
ented analysis, design and implementation of a software architecture which will
be the basis for the development of the control and acquisition programs of two
nstruments:

e The ARCOS correlators installed at the Medicina and Noto radiotelescopes.
e A demonstration total power radiotelescope installed in Arcetri.

The authors believe that this architecture can be used also to develop data
acquisition programs in spectral ranges other than the radio band.

One possible application will be the definition of a standard interface through
which the control programs of detectors installed on the SRT Radio Telescope can
access to the ACS-Alma Common Software services.

The design process is as follows. The program requirements are reviewed
and modeled. The analysis model is then built: it is composed of different views
and diagrams which illustrate the static, dynamic and functional behaviour of
the model. The design model (the second report of this series) is then based on
the analysis model which is modified and extended in a consistent way, following
an iterative approach. The design model describes classes and objects in finer
details so that they can be eastly implemented in any object oriented programming
language.

The class architecture is implemented as a C++ class library.

Introduction

In this document we describe the instrumentation and the operations needed to
carry out a astronomical observation. The approach is as general as possible, to
design and implement a software architecture over which specialized applications
can be more easily developed.

You can think of this structure as a software bus where you plug in the essen-
tial devices needed to carry on an astronomical observation, such as a detector, a
telescope and an archiving system. The software bus provides the links to trans-
fer commands and data from one device to another. Each plug in the bus defines
the interface that the specialized device must conform to.

A command interpreter and a basic command list are also provided. The
command list can be extended to meet the needs of the specific devices in each
application.

The design process uses an Object Oriented approach and the Unified Mod-
eling Language (UML) as the design language. The Object Oriented technology
is one of the most advanced tool in software engineering that enhances code
reusability and software maintenance. Nowadays it is widely use in the astro-
nomical community and has been adopted for the development of AIPS++ and
the software for the ALMA project (ACS).

Chapter 1

The requirements

In recent years the Radioastronomy Group of the Arcetri Astrophysical Observa-
tory, in cooperation with the Institute of Radio Astronomy — Section of Florence,
has developed some data acquisition programs for radioastronomical detectors.
During this work some common aspects showed up clearly while describing the
requirements for each program. This chapter describes these common aspects.

The following devices are the minimum set-up needed to carry out an astro-
nomical observation.

e a telescope,

a detector,

e an archiving system,

e a command interpreter,
e a display.

Also there is a minimum set of operations required to complete an observation.
They are:

a) Input of the parameters used to set-up the equipments.

b) Set-up of the equipments.

¢) Measurement execution, when the detector produces an image of the sky.

e) Display of the image for monitoring purposes.

f

)
)
)
d) Readout of the image from the detector.
)
) Archiving the image in the archive system.
)

g) Log of the instrumentation activity.

Operations from b) to f) may be repeated more than once in a cyclical way.
In the following paragraph the role and functionalities of each device is de-
scribed in greater details.

1.1 The Telescope

The telescope is a device that can be oriented in some specified direction of the
sky, collects the incoming radiation and feeds it to one of its focuses, where a
detector is placed.

In most cases the telescope is oriented to a source (of radiation) which has a
few specific attributes. Among these we can list the following;:

e The name.

e The coordinates that are expressed in a reference system which, generally,
does not depend on the current time or the telescope location.

e The parallax, proper motion, radial velocity (usually referred to the LSR)
and other physical properties.

As time is a crucial item in astronomical observations, a clock is needed to
provide Universal Time (UT) and Sidereal Time (ST).

The telescope is moved using either a (Hour Angle, Declination) or topocentric
(Az,El) mount. The telescope control system provides the correction for the
telescope pointing errors.

The telescope has a communication port to provide a link to the outside world
for remote control.

The telescope can provide its status, which includes:

e The current UT and ST.

e Its current position and its radial velocity component along the line of sight,
referred to the LSR.

e Its status of motion: tracking, slewing, stopped
e Whether it is aligned (ON) or not aligned (OFF) with the source.

e Its location (name of the location, its geographical coordinates and height
above sea level).

e The current meteo parameters.

e The source being observerd.

e The applied pointing corrections.

e The current and commanded pointing offsets.
e The current focus setting.

e The table of the available focuses.

10

1.2 The Detector

The Detector is the device that measures the power or intensity of the radiation
collected by the telescope.

The determination of the power/intensity scale implies the use of calibration
procedures which uses standard astronomical sources (calibrators) and (option-
ally) internal standard sources.

Any astronomical measurement produces an image, i.e. a set of counts, whose
physical meaning is specified by a set of descriptive parameters. For instance they
may include the sky position, the image extent and resolution both in space and
frequency (or wavelenght), and its power/intensity scale.

The angular extent (field of view) and the sampling spacing of the image de-
pend on the distribution of the detector elements (pixels) in the focal plane. The
resolution of the image depends on the wavelength of observation and the linear
dimension of the telescope primary mirror. The spectral extent and resolution
depend only on the spectral response of the detector. If the detector is tunable
in frequency the spectral response (instantaneous band) can be moved within a
wider frequency interval (observable band).

1.3 The Archiving System

Any kind of measurement is stored on a permanent device for later use. Apart
from the choosen archiving format, a file name and a storing device specification
must be given.

We require that the archiving system conforms to one of the formats that
are most common in the astronomical community, such as FITS and CLASS.
TOOLBOX is also required because it has been used in Arcetri from the beginning
of the radio spectroscopic activity.

We list the most relevant information to be included in the image description.

a) Source description (name, coordinates, epoch, Vysg ...)

b) Telescope description (name, geographical coordinates, height above sea
level....).

¢) Detector description.

d) Name of the acquisition program.

e) Observer’s name.

f) UT at the beginning and at the end of the measurement.

g) Data structure (Number of array dimensions, their lenght, number of sub-
scans).

h) Comments.

11

1.4 The Log system

A log system monitors the instrumentation activity writing messages both on a
permanent device as well as on the display.

1.5 The Command interpreter

Observer interaction can be done through different kind of interfaces: graphical
and text interfaces.

A text interface reads command lines (ascii strings) which are interpreted by
the Command Interpreter. Command lines can be edited in a script file which can
be read by the Command Interpreter for batch activity. Instrumentation control
is done using a set of predefined commands that constitute the instrumentation
language.

The command interpreter reads the commands from the interface, checks for
their validity and executes the corresponding operations. Commands can be used
to:

a Define new parameter values.
b Carry out the observation.

¢ Request the current status of the system.

A graphical user interface (GUI) provides the same functionality as the
text interface. It is composed of graphic controls through which the user interacts
with the system. The GUI includes a text window where text commands can be
entered.

1.6 The Display

The Display main task is to show the information coming out from the system,
such as images and parameter values. It and must be configurable to represent
the hardware structure of the devices composing the data acquisition system.

1.7 The Business model

The requirement description is often represented in a synthetic form by the so
called business model. The business use-case diagram (fig. 1.1) and the business
class diagram (fig. 1.2) represent what services the system should provide and
the static structure of the system.

Two activity diagrams illustrate how an observation (fig. 1.3) can be done
and how commands from the consolle can be managed (fig. 1.4).

The complete business model can be found at the URL location:

http://www.arcetri.astro.it/ palagi

12

€l

['T 2m3ig

‘urexSoxd oY} Jo sosed as()

Business use case)

Parameter

Log Specification
Messages
N
1
R 1
<< include >> 1
1
1
1
Display _ Observation
Data K-----°° -
<< include >>
!
A J Observer
\ 1 << include >>
1
1 1
1
. \
<< include >>
\
\ 7 N
1 ,’ ~
\ << include >> . N
\ . N .
. N << include >>
. ~
. N

<< include >>

+ system Monitor System Monitor

Maintainer <—> System Monitor
+ maintainer

Maintainer

BDispla! BTelescope
bimage isplay P
<< table >>
BCatalogue
-theimage
—theimage
Show
Store
!
l N
. <
1 Pointing Source
l
S ——
BArchive '
!
L
<< control >>
BDetectorController
<< business entity >>
BObservingMode
BDetector
Send Commands
BCommand Reader
<< business entity >>
BAtomicOp —Gingioton
ASClock
Searches (Aaaiysis
. << table >>
Observer y

<< business entity >>

BCommand

+ search (key :string):BCommand

Figure 1.2: Requirements description: the so called business class diagram.

14

Activity Observation)

Slew Telescope

Receiver Set-up

Check Pointing

[off source]

Detector Set-up

[on source]

Start Tracking

R
Integration Store Image

Figure 1.3: Requirements description: the observation activity diagram.

15

Accept Commands

][not found]

/ Search Command->

\

\
N \ [y
(Search Command

1

1

1

1
1

]
1
1
! —>Exec | [found }/
1
I
I

7 A\

voc:Vocabulary acommand :BCommand | _ _ _ _ _ - > ‘ Exec)

Final_State 1

Figure 1.4: Requirements description: the command input activity diagram.

16

Chapter 2

Requirement analysis

The analysis of the program requirements consists in defining the static view of
the system and in the use case specification. The final model is the result of several
iterations between this two steps. Each use case is realized by a collaboration
that show how classes cooperate in the use case realization.

2.1 The Object Model

The class model describes the classes in the system together with their relations,
from a static point of view. Classes are identified starting from the business class
diagram of fig. 1.2 and reviewing the requirement description. FEach class is
described in separate paragraphs with emphasis on functional and information
requirements. Functions to access class attributes are not listed explicitly.

A detailed list of attribute and operations can be found in the web document.

The role of some class in the system can be better described through a
<<stereotype>> label. For instance, classes that interact with the outside world
are stereotyped as <<boundary>> while classes that represent items typical of
the business being handled are sterotyped as <<business entity>>. Finally
<<control>> classes coordinate the activity of other classes.

2.1.1 Detector

General description The detector is the core class of this architecture. This
statement is based on the following very simple considerations. If one has even a
very sofisticated and large telescope, but no detector in its focus, no measurement
can be done. On the other hand if you have a detector, but you do not have any
telescope, you can do a measurement though of a very bad quality.

As the detector is the core of the design, the Detector class has the focus
of control while doing an observation, therefore it knows the sequence of steps
needed to get an image of the sky. The Detector is stereotyped as a <<control>>
class. It sends to the telescope the request to point the sky object we want to
observe, takes a good quality image of the observed source and finally asks the
archive to store the image in some suitable format.

17

31

' om3tg

uoryeoyoads sjyuowalmbay :

P ssep oty :

‘ureiger

Description

Image

DataArray

Archive

<< Singleton >>

ASClock

Display

+ stdout

<< control >>

Detector

InputStream

Select

CommandReader

Pointing

Position

Source

<< CORBAInterface >>
Site

* select from

<< business entity >>

ObservingMode

AtomicOperation

ReceiverList

<< boundary >>

Telescope

Acu

’ AZELMount ‘

EquMount ‘

Functional requirements

e The Detector gets commands from CommandInterpreter.

e The Detector asks Telescope to point the source and to collect its radia-
tion.

The Detector gets an Image of the source.

The Detector sends the Image to Display.

The Detector asks Archive to store the Image.

Informative requirements The detector provides a set of specific ObservingMode
objects.

Constraints None

2.1.2 Observation type

General description Each kind of detector has its own operation to get an
image of the source. The ObservingMode class capture this aspect of the system.
In turn an ObservingMode consists of a sequence of atomic operations.

It is contained in Detector.

Informative requirements

e Code.
e Name.

e Number of repetitions.

Functional requirements

e Execution of the operation sequence.
Constraints

2.1.3 Atomic Operation

General description Calls the function that realizes each elementary step in
the observation sequence, i.e. pointing, calibration, measurement etc..
It is contained in ObservingMode.

Informative requirements

e Code

e Function to be executed.

19

Functional requirements

e Run the associated function.
Constraints None

2.1.4 Image

General description Contains the output of an observation in the form of an

array of values and the physical description of the image. The image is a typical

product of any astronomical system so this class is stereotyped as business entity.
Is created by Detector.

Informative requirements

e The image data array.

e The image description
Functional requirements
Constraints None

2.1.5 Image Data

General description It is the array that contains the observed data. It may
have up to four dimensions.

Informative requirements

e The data array.
e The number of points in the array.
e The number of axes of the array

e The dimension of each axes of the array.

Functional requirements

e Data insertion.

Constraints

e [t is part of Image.

e Up to four dimensions.

2.1.6 Image Description

General description Contains the physical description of the image. It is
structured into sections.

20

Informative requirements

e source section.
e detector section.

e telescope section.

Functional requirements

e Data editing.

Constraints

e [t is part of Image.

2.1.7 Telescope

General description The telescope is located in a site on the earth (by the
moment we do not consider a telescope mounted on a satellite), collects the radi-
ation from the observed sky object. To do this it uses a HourAngle-Declination
or topocentric (Az,El) mount. This class is stereotyped as <<boundary>>.

It is derived from Site.

Functional requirements

e Receives pointing messages from the detector.

Converts the source coordinates to coordinate system of the mount.

Moves to the requested direction.

e Moves to a predefined stow position.

Return its status, upon request.

Informative requirements

Description of the telescope location: site name, geographical coordinates.

Description of the telescope mirror: dimension, focal lenght.

Stow position (coordinates).

Current status of motion: tracking, slewing, stopped.

Constraints None

2.1.8 Archive

General description It Receives an Image from the detector, formats and
stores it in the output file.

21

Informative requirements

e The output file.

Functional requirements

e Gets the image from the detector.
e Formats the image data.
e Formats the image description

e Writes to the output file.
Constraints None

2.1.9 LogSystem

Stores and display messages from the other classes in the system. Stereotyped as
<<Utility>>.

Informative requirements
e The log file
e The log display
Functional requirements

e Writes in the log file
e Send message to the display

Constraints None.

2.1.10 CommandInterpreter

General description This class manages the input from the Observer or the
batch input stream. It identifies the input command, validates it and executes
the associated operation.

Informative requirements

e List of available commands.

Functional requirements

e (Creates the newly accepted command.
e Accepts commands from the input stream.

e Executes the associated operation.

22

Constraints

2.1.11 Command

General description This class describes the command functions. It parses
the command line into the keyword and the parameter list. It converts the
parameters in the input line to the internal values.

Informative requirements

Keyword.

List of parameters.

Keyword separator.

Parameter separator.

Functional requirements
e Parses the input line into the keyword and the list of parameters.
e Converts the input parameters.

Constraints None.

2.1.12 Vocabulary

General description This class holds the functions that execute commands.
It searches the command in its list and run it.

Informative requirements
e Keyword.
e Function to be run.
Functional requirements

e Maintains the list of commands.
e Searches the command code in the list of commands.

e Runs the function.

Constraints None.

23

2.1.13 Source

This class describes the source or sky object to be observed. A source is character-
ized by two set of parameters: astrometric and physical parameters. Astrometric
parameters include name, position in a specific reference system and eventually
proper motions.

Physical parameters include all characteristics that are usefull to perform an
observation, such as magnitude, radial velocity and the like. By the moment we
identify:

distance Distance from the sun.
vlsr Radial velocity with respect to the Local Standard of Rest [km/s].
Flux Density A value [Jy] at a specific frequency [GHz|.

It is derived from Position

Informative requirements Name. Physical parameters, such as its spectral
distribution.

Functional requirements
Constraints None.

2.1.14 Position

This class describes the position of a point in a coordinate system.

Informative requirements

e X value.

o Y value.
Functional requirements
Constraints None.

2.1.15 Clock

General description A class Clock is added to provide time informations to
all the classes in the model. As it is used by many of these classes, no explicit
link is shown in the diagram.

It is used by many objects in the system.
Informative requirements System time.

Functional requirements Sidereal Time, Universal Time, Local time.

24

Constraints There is only one object of this class in the system.

25

2.2 Behaviour specifications

The use-cases specification describes the various functionalities of the program
in more details.

Each Use-case may be decomposed in more detailed use-cases connected by
<<include>> and <<extends>> relations. The first one is used to gather func-
tionalities that are (or might be) common to more than one use-case, the second
indicates some extension (e.g. exception conditions or options) to the standard
behaviour.

Fig. 2.2 shows the use-case diagram of the requirement specifications. In the
following sections each use case is described in text form and through sequence
and collaboration diagrams. This activity aims to identify operations of the
classes that collaborate in the realization of each use-case.

A scenario is an instance of a use-case, showing the interactions between
involved objects. One or more scenarios may be used to describe the use-case
realization.

The names of the objects that take part the scenarios are in sans serif fonts.
Usually the name of the object is tha same as that of the instantiated class.

2.2.1 Actors

Two external actors, the observer and the manager, interact with the system
through two different use-cases, which means that they use the system in two
different ways and configurations.

An actor operates on the system through one or more interfaces.

An interface is a collection of operation that defines the role of the actor. The
interface is realized by a class that implements such operations. Operations are
activated by an event produced by the actor. One of such events may be the
activation of a control in a GUI or the input of a text command from the console.

2.2.2 Command Input

observer interacts with the Input Command use-case. Use-cases that represents
command executions are modeled as <<exstension>> of this use-case. Two ex-
amples are Select a source and Observation.

This section describes the interactions occuring when any command is input
from the current input stream of the text interface.

Commands are character strings that have the following format:

command = paraml[,] param2[,] ...[,] paramN

The first word is the command identifier (Keyword), which is separated from
the command parameters by an = sign. Parameters are separated by commas or
blanks. Each keyword is associated with an operation and stored in the vocab-
ulary of the system. Keywords are added to the vocabulary by the classes that
realize part or the whole of an interface.

26

yXé

¢’ 9m31]

JeATOS(() 9} JO uoryeoynadg

*S9SeD 9Ssn uol

Observation spec)

Archiving

(from Use Case View)

Measurement

(from Use Case View)

<< include >> |

<< include >> >

Detector Set-up

(from Use Case View)

\

<< include >>

Set-up

(from Use Case View)

1 .
Set-up->Pointing | << include >>

Tracking Pointing

(from Use Case View) (from Use Case View)

Observation

(from Use Case View)

Source Selection

(from Use Case View)

\
\ << extend >>
\

N

Command Input

(from Use Case View)

Log message

(from Use Case View)

Observer
(from Use Case View)

Display data

(from Use Case View)

The command interpretation is done in two steps. First the keyword is sep-
arated from the parameter string by the CommandInterpreter. The keyword is
then used to search for the command in the Vocabulary. The parameter string
is passed to tha called function which is aware of their format and meaning.

Pre-condition None

Main Event Flow

e observer issues a command on the keyboard
e ci reads the command

e ci parses the command

e ci searches the command in voc.

e voc sends the run message to the command object. The parameter string
is passes as argument of the message.

ExceptionalEvent Flow

e ci searches the command in voc.
e voc does not find the keyword.

e vocC issue a warning message and returns an error.
Constraints None.

2.2.3 Use-case: Observation

The Observation use-case <<include>> three smaller use-cases, Set-up, Measure-
ment and Archiving.

The Observation is the core use-case of the system. The following objects
collaborates to its realization:

e det of class Detector.

e tel of class Telescope.

e im of class Image.

e ar of class Archive.

e ci of class CommandInterpreter.

e w3oh of class Source.

Pre-condition The source to be observed is selected.

The use-case starts when observer selects the on-source observing mode.

det performs its set-up operation, which includes the tel pointing to the ob-
served source position. det starts the integration and saves the result in im. det
sends im to archive.

The use-case ends when im is written into the output file.

28

Onsourceobj

cat:Catalogue

/dstim_1 :select ()

ar:Archive

ci:CommandInterpreter

& stim_10 : := Store(im) ¥ stim_3 :x:= Onsource ()

det :Detector f stim_5 :x:=Measure ()

’/ stim_4 :x:= MoveAt (w3oh)

+ . Create \stim_S 1 x:= Show(im)
t:Teles
im:lmage d:Display

Figure 2.3: Analysis: object diagram for the observe scenario of the observation
use case.

29

Sequence diagram_1)

l cat:Catalogue l l ci:Commandinterpreter l l det :Detector l l tel :Telescope l l im:Image l l d:Display l l ar:Archive l

]]]]]]
! !
! !
1 1
1 1
! 1) .select ():w3oh !
1
1
2) select »“

3) .Onsource ()

I

i

]

]

l

l

]

]

]

]

\]

1 |
!

: 4) .MoveAt (w3oh):: '

!

!

3 g 2 Moveht _

i

i

i

i

i

i

!

' 6) .Measure ():x

‘ {

l

l

] —

]

]

]

]

]

!

!

!

!

!

!

I

i

i

i

;

i

€ [7) Measure

Figure 2.4: Analysis: sequence diagram for the observe scenario of the observation
use case.

Scenario: Source Observation

Fig.s 2.3 and 2.4 show the scenario for the observation of a generic source in the
on-source mode.

a observer issues the On-source command.

b ci identifies the command and send the Onsource message to det.
c det creates im.

d det starts the set-up use-case (<<include>> set-up)

e det starts the integration (<<include>> measurement).

f At the end of the integration time det stores the image data and its descrip-
tion in im.

g det shows im on the display.
h det asks archive to store im.

i archive stores im in the output file (<<include>> out).

Fig. 1.3 shows the activity diagram for the observation of a generic source in
the on-source mode.

30

2.2.4 Use-case: Select a source

A source can be selected from a list or catalogue. The catalogue must be read
before the source can be selected. All catalogues in the system are searched and
a list of catalogues is compiled.

The Select a source use-case represents the management of some source list
or catalogue by the Observer. The <<extend>> link toward Input Command
indicates that the source to be observed may be selected from a catalogue.
Source selection
Fig. 2.5 shows the scenario for the selection of the source to be observed from
the source catalogue.

Precondition A list of catalogues has been compiled.

Main Event Flow
a Observer selects the source catalogue cat.
b ci shows the list of sources in the catalogue.
¢ Observer selects w3oh.
d ci creates the object commanded of class Source.

The use-case terminate when the commanded object is created.

2.2.5 Use-case: Set-up
The system set-up consists in (fig. 2.6):

e Configuring det
e Selecting the receiver rec from the receiver list and configuring rec

e Asking tel to track the current source.

Pre-condition The configuration parameters are defined for source, receiver
and detector.
Main Event Flow

e det checks the paramenters for consistency.
e Based on the selected frequency, det selects and set-up the rec receiver.

e det asks tel for source tracking (<<include>> tracking).

Exceptional Event Flow

e det finds inconsistent paramenters.

e det send an error message to the logbook, indicating the fault parameter.

31

Sourceselobj)

ci:CommandInterpreter

—stim_4 :create

commanded :Source

+ stim_1 :Next ()

+ stim_3 :select()

cat:Catalogue

—»$tim_2 : x}= Show()

Sourceselint J

ci:Commandinterpreter cat:Catalogue commanded :Source

1) .Next ():x >

2) .Show():x

12) Show

<— — 1) Next ||

3) .select ():x »_:

3) select
«)

1
1 4)
: << create :>>
|

Figure 2.5: Analysis: object (top) and sequence (bottom) diagrams for the select
a source use case. 39

Exceptional Event Flow

e tel finds that the source is below the horizon.
e tel reports the unobservable condition to det

e det stops the observation and send an error message to the logbook, indi-
cating the fault parameter.

Postcondition The source is tracked.
The use-case terminate when tel reaches the requested position.

2.2.6 Use-case: Pointing

The Observer uses the system to point the telescope in some specified direction.
The pointing model corrections are applied. Optionally Tracking can be started
and stopped, meaning that the position is countinuosly updated in time.

tel moves the antenna to the commanded source position. Optionally the
tracking mode can be started.

Pre-condition The commanded source is specified. Equatorial coordinates are
assumed. A position threshold for onsource condition is set (depends on the
resolving power).

Main Event Flow

e tel moves to the commanded position.

tel set the move status to slewing.

tel waits until the commanded position is reached.

tel set the status to onsource.

Exceptional Event Flow

e If tracking is requested the tracking activity is started.

e the move status is set to tracking

Exceptional Event Flow: position not observable

e The position is below the horizon. acu does not move and the not observable
status is returned.

e the move status is set to idle

2.2.7 Use-case: Tracking

Tracking is activated to follow a source moving in the telescope reference frame.

Pre-condition Thisis an cycle. The cycle is executed while the tracking status
is true.

33

etupobj

recset :ReceiverList

W stim_1 :rec:= Select(code)

d:Detector

+ stim_2 :Create

f stim_4 :x:=TrackCurrenk () g stim_3 :x:= Setup()

tel:Telescope -
rec:Receiver

Setupint)

tel :Telescope | det :Detector | | recset :ReceiverList | | Lifeline 3 :Receiver

1 1
' 1) .Select(code):x !

<< create >>

1) Select

Figure 2.6: Analysis: object (top) and sequence (bottom) diagrams for the setup
use case.

34

Main Event Flow

e tel compute the new commanded position.

e tel moves the antenna to the commanded position.

2.2.8 Use-case: Measurement

While the telescope is onsource, det goes on measuring, until the integration
time is exausted. At the end of the measurement the image data are read from
the detector hardware. If Observer issues a break command the observation is
aborted and the integrated data are lost.

The activity connected to this use-case involves the class Detector so it is
best represented by a state diagram (Fig. 2.7) for this class.

Pre-condition tel is onsource.

Main Event Flow

e det set the progress time to the integration time.
e det starts the measurement.

e Every second of time: While tel is onsource and the progress time is greater
than 0, the progress time is decreased by one

e det reads the measured data from the detector unit.

Exceptional Event Flow Telescope off source.

e tel is offsource. The integration is suspendend and the progress time is not
decreased.

e a time-out counter is started.

o If tel goes back to onsource the time-out counter is reset and the integration
is resumed.

e if the time-out counter reaches the time-out limit the integration is stopped
and an errore message is sent to the log system. No data is saved.

Exceptional Event Flow Observer break.

e Observer issues the break command.
e det stops the integration.

e im is cleared.

2.2.9 Use-case: Output

The observed image is stored in ar in the specific format. The image is sent
to a graphical display for monitoring purposes. The collaboration and sequence
diagram for this use-case are shown in fig. 2.8.

35

Pre-condition The observation parameters are already defined.

Main Event Flow

e det copies the data set read by the physical detector (hardware) in im.

det completes the description section of im.

det sends im to the graphical display.

det sends im to ar.

e ar converts im to its format and writes it into the output file.

Exceptional Event Flow

2.3 Maintenance

The Maintenance use-case is drawn simply to show that there are two possible
way of use of the system, but it is beyond the scopes of this paper.

2.3.1 Use-case: System Monitoring

The system monitoring can be initiated by any unit in the sistem (log activity)
or by the Observer to have some status information.

Pre-condition The observation parameters are already defined.

Main Event Flow Status request.
Observer initiates the use-case.

e Observer requests the telescope status.
e ci asks tel for its status of motion.

e tel sends the current status of motion to the log system. (log message)

Main Event Flow Log message.
Any object can initiate the use-case.

e The logging object sends a message to the log system.
e the log system add the system time information.

e The log system send the message to the display and write to the log file.

Exceptional Event Flow

36

P
‘ Set Integration Time W

-

fsec[onsource]/ decrease time
read measure

T
J
N
=z

entry / operator break)

time over

measure—>Exit [op break]/

@

Exit

Figure 2.7: Analysis: state diagram of the Detector class describing the measure-
ment use case.

37

+ stim_5 : x:= Write () im :Image

ar:Archive A stim_2 : Set Description

\ stim_4 :x:= Store(im) A stim_1 :x:= Copydata ()

det:Detector

A& stim_3 :x:= Show(im)

dis :Display
det :Detector im :Image dis : Display ar:Archive

:stim_1 :x:= Copydata () :

] 1

I

\ .

! :

Fm2 : Set Description :
|:|I

stim_3 :x:= Show(im)

I
N

Figure 2.8: Analysis: Collaboration (top) and sequence (bottom) diagrams for
the output use case.

38

Bibliography

[1] G. Booch, J. Rumbaugh and I. Jacobson, 1999, The Unified Modeling Lan-
guage User Guide, Addison Wesley Longman, Inc., Reading, MA, USA

[2] R. Pooley and P. Stevens, 1999, Using UML, Software Engineering with
Objects and Components, Addison Wesley Longman Ltd., Harlow, Essex,
UK

[3] Rumbaugh J. and Blama M., 1995, Modelli a Progetti Object—Oriented Pren-
tice Hall International-Jackson Libri eds., Milano, Italia

[4] Booch G., 1994, Object-Oriented Analysis and Design with Applications,
Benjamin/Cumming Publishing Co., Redwood City, Ca, USA

39

