The DiFX Software Correlator at IRA

RarprortO INTERNO IRA-INAF
419/08

J.S. Morgan
INAF - Istituto di Radioastronomia,
Via P. Gobetti, 101
40129 Bologna, Italy.

j.morgan@ira.inaf.it

November 28, 2008

mailto:j.morgan@ira.inaf.it

Contents

B2

Geometry Modelling Software|

3.3 NRAO-DIEXI 000 oo

@ Chosen Third-party Software in Detail|

A1

mpifxcorr (DIEX)|

A2

vex2config.pl (vex2difx)

A3

calcif (NRAO-DiEX)[.

iz

difx271ts (NRAODIEX) .« o o oo e e

N S

O O O @

10
10
10
11
11
12
12
13

14
14
14
15
15
15

.1 Vexwparsers|. oo 0oL 20
[p.1.1 vex2calc.pyl. L 20

[0.1.2 vex2flag.pyl. L 20

p.2 Logparsers| 21
[0.2.1 log2input.py| 21

.22 log2tsys.pyl. 21

[0.2.3 log2comment.py|. 21

B3 Uhltes o oo 22
[0.3.1 machinegen.py| 22

537 KAillAifZ.DYl. - o o o oo 22

.4 Wrappers for 3rd-party Programs| 22
P41 calcif.py|o 22

BAZ QATRIEITS DY -+ v o o e e e 22

043 mpifxcorr.py|l. 23

.5 Integration of the various tools| 23
(5.5.1 correlator_defaults.py and observation.py| ... 23

[0.0.2 pydifx.py|lo 23

{6 The Computer Cluster Used for Correlation| 24
6.1 Machines| L oo 24
(6.2 File Systems| o o oL 25
b3 Benchmarks 25
6.3.1 Bottlenecks| oo 000 25

6.4 Other Softwarel 25

[7 Correlation: Step by Step| 26
[7.1 ~Preparing the Input Files| 26
[7.2 Geometric Modelling| 27
73 Correlationl. 27
[74 Conversion and Post-processing| 27

[8 Upgrade Path| 28
8.1 NextUpgrade| 28
8.1.1 Other Changes| 29

8.1.2 Development Branch|. 30

B.13 Our Contributionl. 30

|A Detailed Notes on Correlation: Step by Step| 32
[A.1 Preparing the Input Files| 32
[A.2 Geometric Modelling| 34
(A3 Correlation. 35
[A.4 Conversion and Post-processing| 35

B Instruch Tnstallation]
(B.1 DiFX and vex2config|
B.2 NRAO-DiEX]

|C Example pydifx script|

Chapter 1

Introduction

This report documents the software correlator and associated software
that we have installed at the Institute of Radio astronomy in Bologna.
This will allow us to do our own Very Long Baseline Interferometry (VLBI)
entirely within the institute all the way from antenna to publication. In
addition it means that there will be expertise on correlation within the
institute.

The centre of this effort is the DiFX software correlator which allows
software correlation on a standard computing cluster. There is a range of
software related to this correlator; we need to choose which software to
use, fill any gaps in the pipeline, and work out how to coordinate these
applications.

This guide is intended both as a user guide and as a repository for all
the information required to run correlations within the institute. Particular
effort has been put into making sure further sources of information are
referenced within this guide.

1.1 Aims

In order to produce a pipeline which is as useful as possible we have kept
in mind the following aims:

Compatibility

In order for our pipeline to be of the most use to our users, it should be
compatible with the tools that IRA astronomers are most familiar with.

For this reason we have tried to make it compatible with the tools
used by the European VLBI network (EVN) [1] since this is the VLBI
network that our astronomers and antennas interact with the most. The
main consequence of this is that we must use vex files, which are currently
used by the EVN but not, for the moment, by the VLBA.

As well compatibility with existing scheduling tools and data formats,
we should also consider incompatibility with data reduction packages (see
pipelining below).

Flexibility

Since one of the main advantages of software correlators is their flexibility,
they will often be used for unusual projects which would be more difficult
to process using a hardware correlator, or that may require correlation
several times with different parameters. It therefore makes sense to make
sure that the pipeline we develop is as flexible as possible too. We will
try to be compatible with as many different input and output formats as
possible.

Automation

Correlation requires the control of a large amount of data, files and
parameters. It is important to keep the workload down, and keep errors
to a minimum by automating as much of this process as much as possible.
However, we have tried to keep all of the underlying tools accessible to
maximise flexibility.

Pipelining

One advantage of a software correlator is that we can use the computer
cluster for further data reduction once the correlation is complete. There-
fore we want the maximum amount of integration with data reduction
packages such as AIPS and casa.

1.2

Conventions

In this document:

‘CPU core’ refers to a single core of a multi-core CPU, or a single-core
CPU.

‘Processing core’ refers to a number-crunching process of the DiFX
software correlator (‘core” in the DiFX instructions).

‘Antenna’ refers to a single station of an interferometer network.
‘UV data’” and ‘UV dataset’ refer to the correlated data.

“UV coordinates” and “‘UVW coordinates’ refers to the data recording
the positions of the antennas in the UV plane.

‘Scan’ refers to a single pointing of the antennas.

‘Subband’ refers to what AIPS calls an IF.

All references to computer files or executable programs are written in
typewriter font. AIPs, CALC/SOLVE, AIPS TASKS, FITS, VEX, SCHED and SKED
are in SMALL CAPS.

Chapter 2

Overview of the Correlation
Process

In this chapter we present an overview of how the correlation is carried out
with particular emphasis on the input and output files. For an overview
of an entire VLBI observation from scheduling to imaging see [2} §5].

Correlation is the process of multiplying and accumulating (time-
averaging) the waveforms from two or more antennas in an interferometer
array [3, Ch 3.2].

In order to produce a correlator system which can replace existing
hardware correlators we need to provide other functionality. Effectively,
we need to be able to transform digitised broadband data (stored in a
format such as Markb) into a UV dataset (in rits format).

The work which our pipeline does can broadly be split into four
functions:

e Parsing the input files and presenting the data in a form which the
correlator and geometric modelling tools can understand.

e Calculating the geometric delays and UVW coordinates of the
antennas throughout the observation (geometric modelling).

e Multiplying and accumulating the broadband data to produce UV
data (the correlation itself).

e Transforming the correlator output and associated data into a form
which can easily be read by data reduction packages.

2.1 Inputs

2.1.1 Broadband Data

The most voluminous data is the broadband data itself.

It consists of a digitised waveform recorded at a high sampling rate, but
with a low number of bits per sample (1 or 2 is most common for VLBI
). It is typically produced at a rate of between 64Mbit/s and 2Gbit/s,
producing of the order of 1 TB per station [4, 5, Whitney, Campbell,
Tzioumis].

At the moment we are typically working with Mark5A [6], however
the software correlator also supports other input formats (these have not
been tested here).

2.1.2 VEex Files

VLBI Experiment files (vex) files are designed to “prescribe a complete
description of a VLBI experiment including scheduling, data-taking and
correlation” [7]. They contain all of the parameters necessary to carry out
the observation.

When scheduling the observation, the astronomer produces a vEx
file which is then sent to each of the stationﬂ The following are the
parameters relevant to the correlation (or required to produce a valid rits
file) contained in the vex file (either implicitly or explicitly).

e A schedule of the various scans (including, of course the start and
end times of the observation).

Names, coordinates and characteristics of the antennag?|

Names and coordinates of the sources.

Subband frequencies, bandwidths, and sidebands.

Formatting of the broadband data ﬂ

Polarisations observed.

In order to “prescribe” a complete description of the experiment,
parameters which cannot be known exactly prior to the observation

1 VLBI scheduling is outside the scope of this guide. An overview can be found in [2}
§5.1]. Two common programs for scheduling are scuep [8] and skep [9]. scheD is used
primarily for astronomy while skep is used for geodesy.

2 Specifically the terrestrial coordinates of the telescope in a cartesian format, the
mount, and the axis offset [3, Ch. 4.7].

® Specifically, the number of quantisation bits, and the “fanout”: How many tracks are
used to record a single datastream.

must be included such as earth orientation parameters and clock offsets.
However the vex file can be processed after the observation in order to
add these.

Many of the parameters contained within the vex file can also be
obtained from other sources, for example the coordinates of the antenna
(which have a derivative due to tectonic plate movement). For the time
being we have chosen to take all parameters from the vex file where
possible, leaving the responsibility for errors with the astronomer.

2.1.3 Earth Orientation Parameters (EOPs)

These parameters describe how the orientation of the earth deviated from
a standard model at the time of the observation [10, 11, m.p]. They are
not required in order to correlate the data, however they are needed to
produce the rrs-mp1 file. The parameters can be downloaded from the
internetﬂ The uncertainty in the values decreases steadily for around a
month after the epoch of the observation.

214 Antenna log files

A log file is generated by the field system [12] at each of the antennas.
These files contain such data as the clock offset and rates; pcal [3, Ch 9.4]
and system temperature (Tsys) measurements[3, Ch 1.2]; and comments
made by the observer. The only ones relevant to the correlation process
itself are the clock offsetﬂ However other parameters must be parsed
and and passed on to the end-user.

2.1.5 Clock Offsets and Rates

The local oscillators of the antennas are driven by some frequency
standard — usually a hydrogen maser. These frequency standards are
chosen for their stability over the time range of the observation rather
than absolute accuracy [3, Ch 3.2]. Throughout the observation the maser
is compared with GPS time. The accuracy of any individual measurement
is very low, ideally measurements should be taken over 24 hours, but often
the log files only contain data over the time of the observation Iﬂ Using
the values within the log files to obtain a clock model is usually sufficient,
but certainly not optimal [13].

The correlator models the clock as having a simple offset and rate.
Future versions of DiFX will characterise the maser with a polynomial.

* For example here: http://gemini.gsfc.nasa.gov/solve_save/usno_finals.erp

> In addition a single Tsys value can be given for each antenna in the software correlator.
However as in the NRAO-DiFX pipeline we set these to 1.

® Tt should also be noted that the offsets for EVN antennas are also available online
e.g. http://www.ira.inaf.it/vlb_arc/gps/dec07/gps.ef

10

http://gemini.gsfc.nasa.gov/solve_save/usno_finals.erp
http://www.ira.inaf.it/vlb_arc/gps/dec07/gps.ef

2.1.6 Correlation Parameters

There are a few correlation parameters which are not recorded in the vex
file, which are chosen by the user. These are:

e The number of channels per subband

e The integration time

These are currently manually entered into the correlator input file just
before correlation.

The input file is quite verbose and so there is lots of scope for
correlating the data in a specific way.

2.2 Geometric Modelling

In order to correlate the data correctly the position of antennas with
respect to the source and to each other must be known extremely
accurately. Specifically the “geometric delays” must be calculated [11} §m].
Essentially delays are calculated which, when applied to the broadband
data, shift them in time so that they are aligned as if all the antennas were
on a plane perpendicular to the source, passing through the centre of the
earth. Thus for ground-based VLBI the delays will be between 0 and
Tearth/C. A separate software package is used to calculate these data over
the duration of the observation which are then provided to the correlator
as ASCII tables. At the same time the UVW coordinates of the antennas
and a simple atmospheric model are calculated. These are included in the
final output file.

11

2.3 Correlation

Although this is the computer-intensive part of the process, mathemati-
cally the process is very simpleﬂ

1. The baseband data from every antenna are aligned with every other
using the geometric delays calculated [14] §2.1.1],

2. The differing velocities of the station with respect to the source are
accounted for (fringe rotation) [14, §2.1.2]

3. The baseband data from every antenna of every subband are
channelised (fourier transformed) [14] §2.1.3]

4. The baseband data from every antenna of every subband are cross
multiplied [14, §2.2.1]

5. The results of these cross multiplications are accumulated (inte-
grated over time) [14, §2.2.2]

6. The resulting output is stored on disk.

2.4 Conversion

Finally the output of the correlator must be converted in to a form which
can be read by data-reduction packages. There is also additional data
from the log files which must be passed on to the end-user.

System Temperatures (Tsys)

The Tsys values are required for amplitude calibration. They are taken
throughout the experiment and can be provided to the user either as a
table in the rits file or in an antaB file. This is a file which contains
the gain curves of the antennas, and the system temperatures observed
throughout the experiment. It allows the user to edit the data manually
before reading it into the data reduction package.

Flagging

The log file may also record the time for which the antenna was off-source
or other problems. This can be provided to the user either as a table in
the rits file or as a uvrLc input file. As with the antas file, providing a
uvrLG file allows the user to perform manual editing if they wish.

7 This very brief outline is somewhat specific to the DiFX software correlator. For a
more general treatment see [11), §i.5]

12

Other

Log files may also include weather conditions throughout the observation
which may be useful in data calibration and editing.

24.1 FITS-IDI

The rits Interferometry Data Interchange convention [15] is the standard
interchange format for correlated VLBI data.

The Tsys values can be added to the rits file directly, or they can be
placed in an anras file for later addition to the data once the values have
been edited manually.

The following tables may be written to the rits file (many are optional).

Table Data
AG Array Geometry
SU Source

AN Antenna

FR Frequency

ML Model

CT EOPs

MC Model Components
SO Spacecraft Orbit
[OAY UV Data and UV coordinates
TS System temperature
PH Phase Cal

WR Weather

GN Gain Curve

Table 2.1: Tables written by difx2fits

13

Chapter 3

The Software Correlator and
Related Software

In this chapter we describe the various software which is available to
carry out the steps described in the previous chapter. In chapter] we will
describe the software we have chosen in more detail.

3.1 The Software Correlator

The heart of our correlator is the DiFX software correlator itself, devel-
oped at Swinburne University of Technology [14]. It essentially allows
correlation to take place on any standard computing cluster.

Another similar effort is being coordinated by JIVE [16].

3.2 Geometry Modelling Software

caLc/soLve [17] is a well-established piece of software, maintained by the
NASA Goddard Flight Center. This software is widely used in VLBI to
calculate the position of the antenna relative to the source for the duration
of observation. Two pieces of software calcif (part of the NRAO-DiFX
pipeline) and vex2model.pl (part of vex2difx) are available which interact
with carLc/soLvE to produce the necessary data in tabular form. Different
versions of caLc/soLvE are available. In addition, there is other software
which could in principle produce the necessary ASCII tables.

14

3.3 NRAO-DiFX

The aim of the NRAO-DiFX pipeline [18] is to provide the extra tools
needed to allow the DiFX correlator to replace entirely the hardware
correlator currently used for the VLBA. Once it is finished therefore, it
will represent a complete and reliable system for software correlation.

The NRAO-DiFX distribution contains lots of tools associated with the
software correlator, as well as a version of the software correlator itself,
modified to read from Mark5 units.

While not yet at the production stage, our experience has been that
the NRAO-DiFX pipeline is already reliable and comprehensive with clear
instructions for use and installation.

The only thing which (from our point of view) is lacking in the NRAO-
DiFX tool set is compatibility with our input files (namely vex files and
our antenna log files). In addition, since it is designed to replace a
hardware correlator in a well-established system, it is currently built with
less flexibility than we are aiming for.

3.4 vex2difx

vex2config.pl and vex2model.pl are a set of perl scripts for producing
the input files for DiFX from vex files. vex2config.pl produces the .input
file, while vex2model.pl runs carc/soLve and generates the ASCII tables.

3.5 IRA-DiFX

Having used all the available tools from these three sources, there were
still a few gaps in the pipeline. These have been written in-house in
python.

15

Chapter 4

Chosen Third-party Software
in Detail

In this chapter we discuss the third-party software we have chosen for
our pipeline. Refer to figure .| for an overview.

4.1 mpifxcorr (DiFX)

Input files Output files
Luvw .difx
.delay

.input

.machine
.cores

mpifxcorr is the DiFX software correlator itself [14]. We are using the
original version [19] rather than the NRAO-DiFX version. It is written in
C++ and is built around two external libraries.

4.1.1 External Libraries
MPI

The Message Passing Interface (MPI) is a widely used API for running
software in parallel on more than one computer [20]. It facilitates the
launch of independent processes on a single machine, or on different
machines in a cluster. Communication between the processes is achieved
via rsh or ssh.

The implementation we have used is mpich [21]. A separate installa-
tion of mpich is maintained for exclusive use with the software correlator.

16

Intel® Integrated Performance Primitives

This is a closed-source library [22] which allows the use of optimised
routines for the vector calculations which lie at the heart of the software
correlator. In principal this library could be replaced by another vector
library such as the open source "AMD Performance Library’ (APL) [23].

4.1.2 Structure of DiFX

The processes running on the cluster are split into 3 different types [14,
§3.2].

FXManager

The first process is designated the FXManager. This manages the
correlation: Coordinating the sending of packets of data from the
Datastreams to the cores, and writing the final data to disk.

Datastream

One process per antenna is designated a Datastream. This node must be
able to access the broadband data for that antenna. The data is read from
file, unpacked, and chunks are passed onto the cores.

Core

All remaining processes are given the slightly ambiguous name of cores
(herein referred to as processing cores). These processes accurately
align one baseline with anothelﬂ fringe-rotate, channelise, correlate and
accumulate the data. The resulting data is passed back to the FXManager
for writing out to disk.

! coarse alignment is done when choosing which packets to send to which cores.

17

4.2 vex2config.pl (vex2difx)

Input files Output files
.skd (vex file) .input

We use vex2config.pl to produce the .input file for the correlator.

4.3 calcif (NRAO-DiFX)

Input files Output files

.calc .uvw
.delay
.rate

calcif is the program which interacts with caLc/sorve. A .calc file is
the main input. calcif interacts with caLc/soLvE via caLc server (which
may run on a separate machine). The three output files are all simple
ASCII tables.

e .uvw contains the UV coordinates of the antennas for the duration
of the observation.

e .delay contains the geometric delay of each of the antennas for the
duration of the observation.

e .rate contains a simple atmospheric model.

The .rate file is not used for the correlation but adds a table to the final
FTs file. The .uvw and .delay files are used by DiFX. All three are used
by difx2fits.

4.4 difx2fits (NRAO-DiFX)

Input files Output files
.difx tsys .FITS

Luvw pcal

.delay flags

.rate weather

This program takes a variety of inputs, the most important being the
correlator output, and produces a rirs-1p1 file.
Some of the input files are optional.

18

aurpadig 103e[e110D) 3y} JO MIIAISAQ :T'F d[qeL

S9|Y |eudsiu]

J10ox1dw

Byuodzxan S

19

Chapter 5

IRA-DiFX Software in Detail

In this chapter we describe the software that has been developed ‘in-
house’”.

Only the more important scripts are mentioned here. More extensive
documentation can be found in the files themselves. All files have a
docstring at the top. All of the executables have a docstring which will
be displayed if they are run without arguments.

5.1 Vex parsers

5.1.1 vex2calc.py

Input files Output files
.skd (vexfile) .calc

The main thing missing is some way to generate a .calc file which is
required both by calcif and difx2fits. There is an official C library
for interacting with vex files, which we could have used. Instead we
found it easier to write a vex file parser in python. The disadvantage to
this approach, is that it may not work on a particularly unusual vex file,
however extensive testing on the vex files taken from the EVN archive did
not throw up any major problems.

5.1.2 vex2flag.py

Input files Output files
.skd (vex file) flag
or

UVFLG input file

The software correlator currently tries to correlate for every time between
the start and the end of the correlation. This leave a small amount of

20

nonsense data between the scans. This script parses the vex file and
produces a flag file which ensures times between the scans are flagged.
vex2flag.py can generate an input file to difx2fits or an input file to
the arps task uvrLG.

5.2 Log parsers

5.2.1 log2input.py

Input files Output files
.log .input

The DiFX .input file describes each station clock as having an offset and
a rate.

This script reads all of the GPS information from the log files and
calculates the intercept (offset) and slope (rate) of the line of best fit.

5.2.2 log2tsys.py

Input files Output files
.log tsys

or

ANTAB

log2tsys.py takes the Tsys readings from the log table and tabulates
them. Using this output it is relatively easy to create an anrtas file by
hand.

5.2.3 log2comment.py

Input files Output files
.log ANTAB

log2comment.py takes the observer comments from the log table and
prints them to stdout, correctly formatted for adding to an antas file
as comments.

21

5.3 Utilities

5.3.1 machinegen.py

Input files Output files
.input .machine
.cluster .threads

Because number of datastream nodes depends on the number of antennas,
the .machine file may change depending on the number of antennas. For
this reason we need to define a cluster file which specifies the names of
the machines in the cluster and how many CPU cores each machine has.
From this information the .machine and .thread files can be generated.

5.3.2 killdifx.py

Input files
.machine

This small script simply connects to all the machines in a machine file and
uses the killall utility to kill any zombie mpifxcorr threads which may
have accumulated.

5.4 Wrappers for 3rd-party Programs

There are several purposes for these programs.

Firstly they simplify the running of calcif, and mpifxcorr; starting
the caLc server in the case of the former, and starting the MPI job with
the appropriate parameters in the case of the latter.

Secondly they provide functions with which pydifx (our python
scripting class) can call these programs.

Thirdly they log the output of these programs both to stdout and to
a log file. This is essential in the testing stages to allow debugging after
the fact, and also to allow benchmarking. The standard python logging
framework is used [24].

54.1 calcif.py

calcif.py checks that the caLc server is running and working, then runs
calcif.

54.2 difx2fits.py

difx2fits.py runs difx2fits.

22

5.4.3 mpifxcorr.py

mpifxcorr.py runs some sanity checks on the input files and output files,
calculates the correct number of processes and launches the MPI job.

5.5 Integration of the various tools

We then require some way to tie all these separate software tools together.
We also want to give the user the ability to automate and customise the
correlation process using a scripting language.

5.5.1 correlator_defaults.py and observation.py

The correlator_defaults file contains default values for various param-
eters which are expected to remain the same across all correlations.

observation.py is placed in the correlation directory (i.e. the directory
which contains all of the input and output files). It can be used to set
values specific to the individual correlation.

5.5.2 pydifx.py

A simple python class pydifx has been written which provides a simple
framework for scripting correlations in python. By writing a simple script
it is simple to carry out the following operations:

e Run any of the tools above.
e Edit the input files.

In addition, all the normal python functions are present for renam-
ing/moving files etc. arps can also be called (via ParselTongue [25])
from the same script. This is particularly useful for debugging and
benchmarking. An example script is given in appendix

23

Chapter 6

The Computer Cluster Used
for Correlation

The correlator is installed on our experimental cluster, which is also an
experimental grid node. We are aiming for the cluster to act as an all-
purpose machine for radio astronomy data reduction.

6.1 Machines

The cluster is heterogeneous consisting of 8 machines connected with a
1 Gbit switch (Table [6.1). This 24 CPU cluster represents a minimum
amount of computing power required to correlate sensible amounts of
data.

Table 6.1: Cluster used for the correlation

Machine Number of Cores Type of Processor Clock Speed
wn01 2 (2 x single core) Intel® 4 Xeon™ 3 GHz
wn02 2 (2 x single core) Intel® 4 Xeon™ 3 GHz
wn03 2 (2 x single core) Intel® 4 Xeon™ 3 GHz
wn04 2 (2 x single core) Intel® 4 Xeon™ 3 GHz

wn05 4 (2 x dual core) AMD Opteron™ 270 2 GHz
wn06 4 (2 x dual core) AMD Opteron™ 270 2 GHz
wn07 4 (2 x dual core) AMD OpteronTM 270 2 GHz
wn08 4 (2 x dual core) AMD Opteron™ 270 2 GHz

24

6.2 File Systems

The input data is currently stored on a GFS file system connected to the
1Gbit switch. The output is stored on the same drive. There is also some
local storage space on each of the machines.

6.3 Benchmarks

For an observation with 4 antennas, and a modest bandwidth of 128
Mbit/s we are able to correlate 3 minutes of data in 10 minutes.

6.3.1 Bottlenecks

If the number of channels per subband is set sufficiently high then the
CPUs are utilised 100%. Reducing the integration time seems to have
little effect on the speed of correlation.

However if the number of channels is small, then neither the network
nor the CPU are at capacity and it is not clear what is the limiting factor.

For the low bandwidth data which we are using, making the Mark5
data accessible locally rather than via NFS seems to make little difference.

We are planning to use our benchmark script on other clusters to
understand in more detail the limiting factors.

6.4 Other Software

We have also installed arps and ParselTongue (a python interface to classic
arps) on the same cluster. We have already experimented with creating
scripts which run the correlator and arps (via ParselTongue[25]) from the
same script. We have also installed the EVN pipeline [26] used at JIVE to
automate the first stages of data reduction (using ParselTongue).

25

Chapter 7

Correlation: Step by Step

This chapter presents an extremely brief overview of the steps required
to carry out a correlation. A little more detail is given in Appendix

7.1

1.

2.

7.

Preparing the Input Files

Process the vex file to create the .input file using vex2conf ig.plE]
Edit the .input file by hand

(a) Remove any unused antennas (alternatively this can be changed
in the vex file

(b) Add paths to the broadband data

(c) Set the number of channels and integration time for each source
. Process the vex file to create the .calc file using vex2calc.py
Edit the .calc file by hand

(@) Remove any unused antennas and (optionally) any unused
scans

. Process the log files to add the clock data to the .input file using
log2input.py

Process the log files to produce the antap file and/or difx2fits
input files

Create the .machine and .thread file using machinegen.py

! yex2config.pl is rather unreliable. Another tool which can be used is vex2difx

from

the latest version of NRAO-DiFX. The vex file produced by either of these tools will

require extensive editing by hand.

26

7.2

1.

7.3

1.

7.4

Geometric Modelling

Run calcif.py to generate the .uvw .delay and .rate files

Correlation

Run the correlator (mpifxcorr.py)

Conversion and Post-processing

. Next we run difx2fits.py

Copy the Fts file to an appropriate directory

Read the data into anTaB using FITLD or run the EVN pipeline

27

Chapter 8

Upgrade Path

The existing tools outlined here will all be maintained and this will be
considered a stable installation. Soon we plan to upgrade the correlator,
as well as installing a development version. This will give us a total of
three software correlators installed concurrently.

8.1 Next Upgrade

NRAO-DiFX 1.1

The various NRAO-DiFX tools that we are working are taken from various
intermediate versions between 1.0 and 1.1 We will upgrade to the 1.1
version [27].

We will also install the NRAO-DIiFX version of the software correlator
itself.

AIPS

Some small upgrades have been made to the latest version of arps
(31DECO08) specifically for use with NRAO-DiFX. We will upgrade to the
latest version to take advantages of these changes.

ParselTongue

Recently a new version of ParselTongue (1.1) has been released with some
developments related to parallel execution.

Casa

Casa [28] is not yet used widely for VLBI (if at all), however we want
to make our data reduction cluster as general as possible. Casa may

28

prove useful for wide-field VLBI imaging where numbers of channels per
subband may exceed built-in limits in arps.
OpenMPI

Some users of DiFX have reported increased performance using OpenMPI
[29] rather than mpich.

PP

We are currently running the same version (5.3) of IPP on all our machines.
We will probably see a significant increase in performance by running the
64bit version on our 64bit machines. We should ensure that we always
have the latest version installed.

EVN “Pypeline”

The EVN pipeline [26] is already installed and working, We may wish to
customise it.

8.1.1 Other Changes

More Machines

There are other machines in the institute which are connected to the 1
Gbps switch, and could be used to increase the performance of the cluster.
Users and Groups

We should give some thought to how we will organise permissions for
the input and output files, and which users should run jobs.

File Systems

We are continuing to experiment with parallel file systems to store the
large amount of input data.

29

8.1.2 Development Branch
NRAO-DiFX 2.0

At the same time we will install the development branch of the correlator:
NRAO-DiFX 2.0 [27, §2.4]. This will probably become the standard
correlator installed at all the sites currently using DiFX. This is largely
because NRAO-DiFX 2.0 will use vex files making it compatible with the
systems used in other institutes.

8.1.3 Owur Contribution

At the last DiFX conference in Bonn we agreed to work on two aspects of
NRAO-DiFX 2.0.

Logging

Adapting the python logging system to the status broadcast system
(difxmessage) of NRAO-DiFX 1.1 [27, §10].

Benchmarking

Using pydifx, we will collaborate with Cagliari to produce some bench-
marking scripts for the software correlator.

30

Acknowledgements

Many thanks to Franco Mantovani, Mauro Nanni, Steven Tingay and
Walter Alef for advice on many aspects of informatics, correlation and
interferometry.

This research was supported by the EU Framework 6 Marie Curie Early
Stage Training programme under contract number MEST-CT-2005-19669
“ESTRELA”.

31

Appendix A

Detailed Notes on Correlation:
Step by Step

77

In this example we have an observation with observation ID “example”.
In one directory we have the vex file and the antenna log files.

1s
example.skd
exampleef.log
examplema.log
examplemc.log
examplewz.log

We will generate all input files in this directory. The output will also be
stored here.

A.1 Preparing the Input Files

Process the vEex file to create the .input file

vex2config.pl example
1s -rt

example.input

or

vex2difx example
1s -rt
example.input
example.calc

If vex2difx is used you will probably want to delete the .calc file.

32

Edit the .input file by hand
— Set the paths to the input files and to the output data
— Set the number of channels and integration time for each source

For this every configuration in the configurations table has to be set (i.e.
one for each source)

INT TIME (SEC): 4
NUM CHANNELS: 32
— Remove any unused antennas

Alternatively this can be changed in the textscvex file

— Add paths to the broadband data
These will look something like this:

DATA TABLE
D/STREAM O FILES: 5

FILE 0/0: /data/SP-tmp/jm/corrl_ef_no0001
FILE 0/1: /data/SP-tmp/jm/corrl_ef_no0002
FILE 0/2: /data/SP-tmp/jm/corril_ef_no0003
FILE 0/3: /data/SP-tmp/jm/corri_ef_no0004
FILE 0/4: /data/SP-tmp/jm/corrl_ef_no0005
D/STREAM 1 FILES: 5

FILE 1/0: /data/SP-tmp/jm/corrl_mc_no0001
FILE 1/1: /data/SP-tmp/jm/corrl_mc_no0002
FILE 1/2: /data/SP-tmp/jm/corrl_mc_no0003
FILE 1/3: /data/SP-tmp/jm/corril_mc_no0004
D/STREAM 2 FILES: 5

FILE 2/0: /data/SP-tmp/jm/corrl_ma_no0001
FILE 2/1: /data/SP-tmp/jm/corrl_ma_no0002
FILE 2/2: /data/SP-tmp/jm/corrl_ma_no0003
FILE 2/3: /data/SP-tmp/jm/corri_ma_no0004
D/STREAM 3 FILES: 5

FILE 3/0: /data/SP-tmp/jm/corrl_wz_no0001
FILE 3/1: /data/SP-tmp/jm/corrl_wz_no0002
FILE 3/2: /data/SP-tmp/jm/corrl_wz_no0003
FILE 3/3: /data/SP-tmp/jm/corrl_wz_no0004

Process the vex file to create the .calc file

vex2calc.py example
1s -rt

33

example.calc

Edit the .calc file by hand

— Remove any unused antennas and (optionally) any unused scans

calcif will run more quickly with a limited number of scans, however

the correlator can work perfectly fine if the .uvw and .delay files cover a

greater range than that which is being correlated

Process the log files to add the clock data to the .input file

log2input.py example "exampleef.log examplema.log examplemc.log examplewz.log"
Process the log files to produce the anTaB file and/or difx2fits input

files.

This step is not entirely automatic. We essentially need to tabulate the
Tsys data.

Start with an existing antaB file which contains the gain curves for
the antennas you want. Run log2tsys.py once in order to determine the
names of the subbands:

log2tsys.py exampleef.log

There will be some columns which are the averages over several subbands
and others which are the Tsys values for the individual subbands. Specify
these in the correct order and log2tsys.py will print them correctly

log2tsys.py exampleef.log "ul u2 u3 u4"

Optionally the observer comments can be extracted from the log files
and added to the anTas file using log2comments. py
Create the .machine and .thread file

machinegen.py example
1s -rt
example.machine
example.thread

A.2 Geometric Modelling

Generate the .uvw, .delay and .rate files.

calcif.py example

34

1s -rt

example.delay
example.rate
example.uvw

A.3 Correlation

Run the correlator

This is as simple as running

mpifxcorr.py example
However we recommend running

screen -r
screen
mpifxcorr.py example

Gnu screen runs a ‘shell within a shell” such that if the machine where
the operator is sitting crashes (or the connection breaks) the correlator
continues to function. This can be done deliberately by typing ctrl-a d
(d for detach). The screen can then be 'reattached” by typing screen -r.

Care must be taken to ensure every screen session is exited once the
correlation is finished. Exit the shell in the usual manner making sure
that you see the following line:

[screen terminating]

It is good practice to run screen -r before each new screen session to
ensure that old sessions aren't still running.

The log file will be generated in real time. You may want to keep an
eye on things by typing

grep error log

once in a while.

A4 Conversion and Post-processing

Next we run difx2fits.py

#ls -rt
example.skd
exampleef.log
examplema.log

35

examplemc.log
examplewz.log
example.input
example.calc
EXAMPLE.ANTAB
example.machine
example.delay
example.rate
example.uvw
log.2

log.1

log
example.difx/

difx2fits.py example
#ls -rt

example.difx/
EXAMPLE.FITS

Copy the fits file to an appropriate directory

Read the data into arps using FITLD or run the EVN pipeline

36

Appendix B

Instructions on Installation

Instructions on installation can be found in other sources.

B.1 DiFX and vex2config

DiFX and vex2config can be installed following the instructions on Adam
Deller's website [19]. DiFX can be taken from the website or the
Subversion (SVN) archive, but please note that we are not currently using
the NRAO-DiIFX version of the correlator.

B.2 NRAO-DiFX

These tools are can be installed checking out from the Subversion archive
from around 1 May 2008. Most versions from around February should
be fine, however to be completely consistent, use the revision numbers
listed below. Comprehensive installation instructions can be found in the
README for each of the tools.

B.3 IRA-DiFX

These tools can also be found in the Subversion archive. They are installed
following the instructions in INSTALL in the directory for each library.

Table Subversion revision
calcserver 223
job2difx (calcif) 299
difx2fits 366
difxio 366

pydifx (IRA-DiFX) 863

37

Appendix C

Example pydifx script

#! /usr/local/bin/ParselTongue

muan

This pydifx/ParselTongue script carries out the correlation scan by scan,
then assembles the resulting visibilities in a single FITS file.

The .input file and .calc file have already been generated.
from AIPS import AIPS

from AIPSData import AIPSUVData

from AIPSTask import AIPSTask

ATPS.userno = 142

from os import rename

import difxlog as log
from pydifx import DifxJob

rootname = ’IRACORR1’

root = ’/data/SP-1/IRACORR1/080305a/’ + rootname
fitsname = rootname + ’.FITS’

mkbroot = ’/data/SP-1/IRACORR1/4stations/corrl_’

Create Correlator object
¢ = DifxJob(rootname)

Generate machine and thread files
c.machinegen()

nscans = int(c.get_calc(’NUM SCANS’))

c.set_input (’OUTPUT FILENAME’, root + ’.difx’)

38

for i in range(l, nscans):

c.set_input (’FILE 0/0’, mkbroot + ’ef_no’ + %044’ % 1)
c.set_input (°FILE 1/0’, mkbroot + ’mc_no’ + °%04d’> % i)
c.set_input (’FILE 2/0’, mkbroot + ’ma_no’ + ’%04d’> % 1)
c.set_input (°FILE 3/0’, mkbroot + ’wz_no’ + °%04d’> % i)

exectime = float(c.get_calc(’SCAN ’> + str(i - 1) + > POINTS’)) =*\
float(c.get_calc(’INCREMENT (SECS)’))

c.set_input (’EXECUTE TIME (SEC)’, str(exectime))

startsecs = float(c.get_calc(’START HOUR’)) = 3600 +\
float(c.get_calc(’START MINUTE’)) * 60 +\
float(c.get_calc(’START SECOND’)) +\
float(c.get_calc(’SCAN > + str(i - 1) + > START PT’))

c.set_input (?’START SECONDS’, str(startsecs))

#run the correlator
if 1 > 1:

c¢.killdifx ()
log.info(’Starting Correlator’)
c.go()
log.info(’Correlator Finished’)

#convert to fits
c.difx2fits(rootname, fitsname, delete = True)

#add to aips

data = AIPSUVData(c.get_calc(’0BSCODE’), ’UVDIFX’, 1, 1)
fitld = AIPSTask(’fitld?’)

fitld.infile = fitsname

fitld.outdata = data

fitld.doconcat = 1

fitld.go()

#rename fits file
rename (fitsname, root + *%04d.FITS’ % i)

output aips fits file

fittp = AIPSTask(’fittp’)
fittp.indata = data

fittp.outfile = rootname + ’ALL.FITS’
fittp.format = 3

fittp.go()

39

Bibliography

[1] (2008) The European VLBI Network. [Online]:
http:/ /www.evlbi.org/

[2] R. C. Walker, “Very Long Baseline Interferometry,” in Synthesis
Imaging in Radio Astronomy II, ser. Astronomical Society of the Pacific
Conference Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds.,
vol. 180, 1999, pp. 433—+.

[3] A.R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and
synthesis in radio astronomy. New York, Wiley-Interscience, 1986, 554
p-, 1986.

[4] W. Alef, “A Review of VLBI Instrumentation,” in European VLBI
Network on New Developments in VLBI Science and Technology,
R. Bachiller, F. Colomer, J.-F. Desmurs, and P. de Vicente, Eds., 2004,
pp. 237-244.

[5] (2008) The 9th European VLBI Network Symposium. Presentations.
[Online]:
http:/ /www.ira.inaf.it/meetings/evn9/presentations/

[6] (2003) Mark5 VLBI Data System. [Online]:
http:/ /www.haystack.mit.edu/tech/vlbi/mark5/index.html

[7] (2002) VEX File Definition/Example. [Online]:
http:/ /www.haystack.mit.edu/tech/vlbi/mark5/vex.html

[8] R. C. Walker, “THE SCHED USER MANUAL VERSION 6.05,”
NRAO, Tech. Rep., Jun. 2008. [Online]:
http:/ /www.aoc.nrao.edu/~cwalker/sched /sched /sched.html

[91 N. R. Vandenberg, “sked: Interactive/Automatic Scheduling
Program,” NASA/Goddard Space Flight Center, Tech. Rep., Aug.
1999. [Online]:
ttp:/ /gemini.gstc.nasa.gov /pub/sked /docs/SKED.pdf

[10] (2001) The Earth Orientation Parameters. [Online]:
http:/ /www.iers.org/MainDisp.csl?pid=95-87

40

http://www.evlbi.org/
http://www.ira.inaf.it/meetings/evn9/presentations/
http://www.haystack.mit.edu/tech/vlbi/mark5/index.html
http://www.haystack.mit.edu/tech/vlbi/mark5/vex.html
http://www.aoc.nrao.edu/~cwalker/sched/sched/sched.html
ftp://gemini.gsfc.nasa.gov/pub/sked/docs/SKED.pdf
http://www.iers.org/MainDisp.csl?pid=95-87

[11] O.]. Sovers, J. L. Fanselow, and C. S. Jacobs, “Astrometry and geodesy
with radio interferometry: experiments, models, results,” Reviews of
Modern Physics, vol. 70, pp. 1393-1454, Oct. 1998.

[12] (2007) Field System Index. [Online]:
http:/ /www.naic.edu/~astro/aovlbi/fsdoc/fsindex-full. html

[13] H. J. V. Langevelde, “GPS Clocks in the EVN; Toward Blind
Correlation,” JIVE, Tech. Rep., 1996. [Online]:
www.evlbi.org/tog/gps/gps201.ps

[14] A. T. Deller, S.]J. Tingay, M. Bailes, and C. West, “DiFX: A
Software Correlator for Very Long Baseline Interferometry Using
Multiprocessor Computing Environments,” pasp, vol. 119, pp. 318-
336, Mar. 2007.

[15] E. W. Griesen, “The FITS Interferometry Data Interchange
Convention,” AM113.pdf, NRAO, Tech. Rep., 2008. [Online]:
http:/ /www.aoc.nrao.edu/ ~egreisen/

[16] (2008) SCARIe. [Online]:
http:/ /www.jive.nl/dokuwiki/doku.php/scarie:scarie

[17] (2007) Mark-5 VLBI Analysis Software Calc/Solve. [Online]:
http:/ /gemini.gstc.nasa.gov/solve/

[18] W. Brisken, “A Guide to Software Correlation Using NRAO-DiFX
Version 1.0,” NRAO-DiFX-UserGuide.pdf, NRAO, Tech. Rep., 2008.
[Online]:
http:/ /www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.0/

[19] (2007) The DiFX homepage. [Online]:
http:/ /astronomy.swin.edu.au/~adeller/software /difx/

[20] (1995) MPI: A Message-Passing Interface Standard. [Online]:
http:/ /www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

[21] (2008) MPICH-A Portable Implementation of MPIL. [Online]:
http:/ /www-unix.mcs.anl.gov/mpi/mpich1/

[22] (2008) Intel® Integrated Performance Primitives 5.3. [Online]:
http:/ /www.intel.com/cd/software/products/asmo-na/eng/
302910.htm

[23] (2008) AMD Performance Libraries. [Online]:
http:/ /developer.amd.com/cpu/Libraries/Pages/default.aspx

[24] (2008) Python Logging. [Online]:
http:/ /www.python.org/doc/2.5.2/1ib/module-logging.html

41

http://www.naic.edu/~astro/aovlbi/fsdoc/fsindex-full.html
www.evlbi.org/tog/gps/gps201.ps
http://www.aoc.nrao.edu/~egreisen/
http://www.jive.nl/dokuwiki/doku.php/scarie:scarie
http://gemini.gsfc.nasa.gov/solve/
http://www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.0/
http://astronomy.swin.edu.au/~adeller/software/difx/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www.intel.com/cd/software/products/asmo-na/eng/302910.htm
http://www.intel.com/cd/software/products/asmo-na/eng/302910.htm
http://developer.amd.com/cpu/Libraries/Pages/default.aspx
http://www.python.org/doc/2.5.2/lib/module-logging.html

[25] (2008) The Parseltongue Wiki. [Online]:
http:/ /www.jive.nl/dokuwiki/doku.php/parseltongue:
parseltongue

[26] (2008) EVN Pipeline Feedback for User Experiments. [Online]:
http:/ /www.evlbi.org/pipeline/user_expts.html

[27] W. Brisken, “A Guide to Software Correlation Using NRAO-DiFX
Version 1.1,” NRAO-DiFX-1.1-UserGuide.pdf, NRAO, Tech. Rep.,
2008. [Online]:
http:/ /www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.1/

[28] (2007) CASA. [Online]:
http:/ /casa.nrao.edu/

[29] (2008) Open MPI: Open Source High Performance Computing.
[Online]:
http:/ /www.open-mpi.org/

42

http://www.jive.nl/dokuwiki/doku.php/parseltongue:parseltongue
http://www.jive.nl/dokuwiki/doku.php/parseltongue:parseltongue
http://www.evlbi.org/pipeline/user_expts.html
http://www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.1/
http://casa.nrao.edu/
http://www.open-mpi.org/

	Introduction
	Aims
	Conventions

	Overview of the Correlation Process
	Inputs
	Broadband Data
	Vex Files
	Earth Orientation Parameters (EOPs)
	Antenna log files
	Clock Offsets and Rates
	Correlation Parameters

	Geometric Modelling
	Correlation
	Conversion
	FITS-IDI

	The Software Correlator and Related Software
	The Software Correlator
	Geometry Modelling Software
	NRAO-DiFX
	vex2difx
	IRA-DiFX

	Chosen Third-party Software in Detail
	mpifxcorr (DiFX)
	External Libraries
	Structure of DiFX

	vex2config.pl (vex2difx)
	calcif (NRAO-DiFX)
	difx2fits (NRAO-DiFX)

	IRA-DiFX Software in Detail
	Vex parsers
	vex2calc.py
	vex2flag.py

	Log parsers
	log2input.py
	log2tsys.py
	log2comment.py

	Utilities
	machinegen.py
	killdifx.py

	Wrappers for 3rd-party Programs
	calcif.py
	difx2fits.py
	mpifxcorr.py

	Integration of the various tools
	correlator_defaults.py and observation.py
	pydifx.py

	The Computer Cluster Used for Correlation
	Machines
	File Systems
	Benchmarks
	Bottlenecks

	Other Software

	Correlation: Step by Step
	Preparing the Input Files
	Geometric Modelling
	Correlation
	Conversion and Post-processing

	Upgrade Path
	Next Upgrade
	Other Changes
	Development Branch
	Our Contribution

	Detailed Notes on Correlation: Step by Step
	Preparing the Input Files
	Geometric Modelling
	Correlation
	Conversion and Post-processing

	Instructions on Installation
	DiFX and vex2config
	NRAO-DiFX
	IRA-DiFX

	Example pydifx script

