

A Digital Backend Architecture

for Fourier Imaging

A. Mattana, M. Bartolini, G. Naldi

IRA 449/11

1

Referee: Andrea Orlati

2

Contents

Preface 3
Chapter I: Digital Backends 4
 CASPER group 4
 ROACH 4
 Programming and Libraries 5
 Introducing the project 7
 Clock Signals 9
 Network Scheme 10
Chapter II: F-engine 12
 Data acquisition 13
 Filtering sub-bands 14
 X-engine branch 18
 Amplitude and Phase Equalization 19
 Quantization 21
 Formatting data for next engines 22
 S-engine branch 39
 Quantization 41
 Control Signals and Registers 50
Chapter III: X-engine Correlator 57
 Getting data from F-engine 58
 Correlation 61
 Control Signals and Registers 75
Chapter IV: S-engine Spatial FFT 79
 Getting data from F-engine 80
 2D FFT 83
 Control Signals and Registers 98
Acronyms 101
Bibliography 102

3

Preface

 This document wants to describe a possible FPGA architecture to develop a Fourier Imager using

the Medicina Northern Cross Radio telescope. The test bed for this project is a portion of the North-South

arm also knows as BEST-2 (Basic Element for SKA Training), it is a 8 cylinders having 4 RX each in single

polarization.

 The digital backend used is a CASPER (Parsons, A., et al., "Digital Instrumentation for the
Radio Astronomy Community", astro-ph/0904.1181, April 2009) board based on XILINX FPGAs,
the ROACH board.

 The development has been performed by using the Xilinx System Generator embedded in

the Mathworks Matlab which allows to use a Xilinx Blockset plus custom radio astronomy

libraries realized by the CASPER CONSORTIUM.

 In order to simplify the reading of this book the description of the activity of each block has

been rotated in a horizontal layout, the input signals come from left and the result signals leave

to the right. Where no explicit, time goes from right to left.

 This document describes only the project architecture and not the software running on the

workstation or the radio astronomic post processing tools.

 This project has been realized in collaboration with the Oxford University, and a special

thanks goes to Kris Zarb-Adami, Jack Hickish, Griffin Foster, Danny Price, and the local team at

IRA, Stelio Montebugnoli, Germano Bianchi and Marco Schiaffino.

 The image in the cover is a result obtain after the post processing done by Griffin Foster.

4

Digital Backends

CASPER group

 The term CASPER means “Collaboration for Astronomy Signal Processing and Electronics
Research”. The CASPER was born at the Berkeley University of California, with a collaborations of
several institute and laboratories. The primary goal of CASPER is to streamline and simplify the
design flow of radio astronomy instrumentation by promoting design reuse through the
development of platform-independent, open-source hardware and software.

 The CASPER group aim is to couple the real-time streaming performance of application-
specific hardware with the design simplicity of general-purpose software. By providing
parameterized, platform independent gateware libraries that run on reconfigurable, modular
hardware building blocks, we abstract away low-level implementation details and allow
astronomers to rapidly design and deploy new instruments.

ROACH

 Reconfigurable Open Architecture Computing Hardware is the last CASPER released board.
The ROACH has in total 4 FPGA:

 a Xilinx VIRTEX 5 (package: XC5VSX95T-1FF1136) dedicated for the user as DSP
 an AMCC 440EPx Embedded Processor is a CPU 400-667MHz as a Linux Power PC
 an Actel AFS600 FPGA as a system supervisor
 a Xilinx XC2C256 CPLD as a JTAG programmer emulator

 We have 5 ROACH boards at Medicina (up to now) and we need to use 3 of them for this
project. The board comes with many interface peripherals such DDR2 RAM, corner turn memory,
gpio pins and leds and high speed data transfer links such 10GbEth link, 10/100 Mb Ethernet link.

 Only one ROACH board is dedicated to the data acquisition and the synchronization with the
time and the regularity of the samples is guaranteed from a clock and a PPS signal both locked to
the hydrogen maser atomic clock. The communication between the boards will be implemented

5

with a peer-to-peer XAUI protocol, while the data will be passed to the workstation encapsulated
in UDP packets.

Figure 1: one of the ROACH boards at Medicina without the chassis.

Programming and Libraries

 The System Generator is a DSP design tool from Xilinx that enables the use of The Mathworks
model-based design environment Simulink for FPGA design. Over 90 DSP building blocks are
provided in the Xilinx DSP blockset for Simulink. These blocks include the common DSP building
blocks such as adders, multipliers and registers. Also included are a set of complex DSP building
blocks such as forward error correction blocks, FFTs, filters and memories.

Figure 2: A view of some XILINX blocks used in Simulink

6

 These blocks leverage the Xilinx IP core generators to deliver optimized results for the
selected device.

 The Embedded Development Kit (EDK) is a suite of tools and Intellectual Property (IP) that
enables you to design a complete embedded processor system for implementation in a Xilinx
FPGA device. Think of it as an umbrella covering all things related to embedded processor
systems and their design. The Xilinx ISE software must also be installed to run EDK.

 The CASPER group has realized an open source library set customized for the astronomers
and optimized for the FPGAs mounted on their boards, and to easily use the integrated
peripherals.

Figure 3: An example view of the CASPER DSP blockset to synthetize a polyphase filters bank

 Programming with the system generator becomes easy with respect to use the VHDL
language and it is very similar to use any electronic IDE tool, simulation included. This is the
reason because this document will be rotated horizontally, in a vertical style you cannot
represent in a good shape the layout of circuits, the view in horizontal is much better also to
represent a signal in the time in a graph.

7

Introducing the project

 The antenna acquisition system used for this project is the BEST-2 demonstrator. It is a part
of the north-south arm of the Medicina Northern Cross Antenna composed of 8 cylinders having
4 receivers (RX from now on) each. Therefore there are 32 analogic signals to be sample and
processed. All the Northern Cross does not have a dual polarization. All the RF BEST-2 signals are
transmitted to the receiver control room via optical link preserving any electrical properties.

Figure 4: BEST-2 section of the Medicina Northern Cross Radiotelescope, courtesy of Marco Schiaffino

 The Analog to Digital converter (AD) installed in the ROACH board computes 64 input x 12 bit
and 40Mbps, and we use only 32 input leaving spare the others. This is a custom AD, the library
to drive the acquisition in Simulink has been written by the Oxford team that has modified also
the polyphase filter bank block to manage the interleaved data flow. The project has been
divided in 3 ROACH boards for capability reasons:

 F-engine that acquire the IF signals, filters the input signals in sub-bands and applies
equalizations and quantizations

 X-engine that works as a correlator for the array calibration
 S-engine that compute the 2D FFT for the imaging

8

Figure 5: Conceptual project scheme, courtesy of Jack Hickish (Oxford University)

 As described in the picture above, the analogic signals coming from the antenna are digitized,
then calibrated, a 2D FFT is applied taking into account the BEST-2 single polarization (the second
pol is zero padded), and finally there is an accumulation of the power spectra. To obtain the
image the analysis needs to be completed with astronomical tools like the NRAO CASA.

2D FFT

S

Power

x2

Accumulate

!
n

0

Sky Image

Input

V V V

V V V

V V V

V V V

V

V

V

V

V V V 0 0 0 0

V V V 0 0 0 0

V V V 0 0 0 0

V V V 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Zero pad

V

V

V

V

0

0

0

0

Calibration

G,!

pps X engine

ROACH-2

S engine

ROACH-3

CX-0

CX-1

CX-2

CX-3

CX-0

CX-1

CX-2

CX-3

CX-0

CX-1

CX-2

CX-3

Clock Signals

F engine

ROACH-1

ADC

64ch

16 out x 4 ch each x 12 bit

40 Mbps

Hydrogen Maser

Atomic Clock

Clock Synthetizer Distributor

10MHz

Clock
40MHz + 7dBm

pps

Internal Oscillator
200 MHz

Internal Oscillator
200 MHz

System Generetor set
to arbitrary clock

System Generetor set
to arbitrary clock

9

X engine

ROACH-2

S engine

ROACH-3

CX-0

CX-1

CX-2

CX-3

CX-0

CX-1

CX-2

CX-3

10/100Mb eth Link

10Gb eth Link

10Gb eth Link

1
0

G
b

 eth
 Lin

k

Network Scheme

CX-0

CX-1

CX-2

CX-3

F engine

ROACH-1

ADC

64ch

16 out x 4 ch each x 12 bit

40 Mbps

1
0

10Gb
Ethernet Switch

1
1

F engine
ROACH-1

ADC

64ch
16ch x 12 bit

(32ch interleaved)

16 out x 4 ch each x 12 bit

40 Mbps

PFB

Reorder

FFT

Amp EQ

Quant

X eng

Phase EQ

Quant

S eng

QDR

transpose

QDR

transpose

and reorder

per antenna

S engine ROACH-3

X engine ROACH-2

ADC

64ch

16ch x 12 bit

(32ch interleaved)

16 out x 4 ch each x 12 bit

40 Mbps

PFB Reorder FFT

Amp EQ

Quant

X eng

QDR

transpose and

reorder per

antenna

Starting from the F-engine

Roach-1

Phase EQ

Quant

S eng

QDR

transpose

1
2

F engine

F engine

Ant0

Ch0

dout0

dout1

0 - 3

4 - 7

Ant1

Ch0

Ant2

Ch0

Ant3

Ch0
Ant0

Ch1

Ant1

Ch1

Ant4

Ch0
Ant5

Ch0

Ant6

Ch0

Ant7

Ch0
Ant4

Ch1

Ant5

Ch1

ADC

64ch

16ch x 12 bit

(32ch interleaved)

16 out x 4 ch each x 12 bit

40 Mbps

1
3

The 64 input AD takes both the ZDOKs connector
on the ROACH board, there is a supply connector

to allow to plug 64 SMA connectors

Ant0 Ant1 Ant2 Ant3 Ant0 Ant1

dout0

Ant4 Ant5 Ant6 Ant7 Ant4 Ant5

dout1

0 - 3

4 - 7

Ant8 Ant9 Ant10 Ant11 Ant8 Ant9

dout2
8 - 11

……

Ant28 Ant29 Ant30 Ant31 Ant28 Ant29

dout7 28 - 31

doutn

[18.17] x 32

PFB OUT
[12.11] x 32

PFB IN

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

Sample n Sample n+1

Still Real data

Customized

PFB block to

handle data

1/4 clocked

1
4

ADC

64ch

16 out x 4 ch each x 12 bit

40 Mbps

The customized polyphase filter bank

1
5

Data is reordered so that an entire window can be shifted through the FFT

F engine

Reorder

Reorder Init

n_fft = 11

Example using n_fft = 3:

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

Ant0 Ant1 Ant2 Ant3 Ant0 Ant1

In_0_3

Ant4 Ant5 Ant6 Ant7 Ant4 Ant5

In_4_7

0 - 3

4 - 7

Ant8 Ant9 Ant10 Ant11 Ant8 Ant9

In_8_11
8 - 11

……

Ant28 Ant29 Ant30 Ant31 Ant28 Ant29

In_28_31 28 - 31

Sample n Sample n+1

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

Ch0 Ch1 Ch M-1 Ch0 Ch1

out_0_3

out_4_7

out_8_11

……

out_28_31

Antenna n Antenna n+1

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

Ch M

Where M = 2n_fft - 1

part_reorder = [0:4:2^(n_fft+2)-1];

reorder = [];

for multiplex_index = [0:3]

 reorder = [reorder,[part_reorder]+multiplex_index];

end

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

1
6

F engine

A real-sampled biplex FFT, with output demuxed by 2

Ch0 Ch1 Ch M-1 Ch0 Ch1

in_0-3

in_4-7

in_8-11

Antenna n

Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

in_12-15

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

Antenna n+1

…
.................…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
…
.…

Ch0 Ch1 Ch M-1 Ch0 Ch1

in_16-19

in_20-23

in_24-27

Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M

in_28-31

Ch0 Ch1 Ch M-1 Ch0 Ch1 Ch M
.…

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
..…

…
…
.…

M = 2n_fft - 1

Ch0 Ch1 Ch
𝑀

2
− 1 Ch0 Ch1

out_0_4_1_5_2_6_3_7

Ch
𝑀

2

…
…
…
…
…
…
…
…
.............…

Ch0 Ch1 Ch
𝑀

2
− 1 Ch0 Ch1 Ch

𝑀

2

out_8_12_9_13_10_14_11_15

Ch0 Ch1 Ch
𝑀

2
− 1 Ch0 Ch1

out_16_20_17_21_18_22_19_23

Ch
𝑀

2

…
…
…
…
…
…
…
…
.............…

Ch0 Ch1 Ch
𝑀

2
− 1 Ch0 Ch1 Ch

𝑀

2

out_24_28_25_29_26_30_27_31

n_fft = 11

2048 clock cycles for each antenna

8192 clock cycles needed
1024 clock cycles for each antenna

8192 clock cycles needed

Antenna n Antenna n+1

Complex data

re[18.17], im[18.17]

Complex data

re[18.17], im[18.17]

1
7

F engine

In order to make more readable this document we
assume from now on this new antennas numbering

which we will taking into account at the and

!! IMPORTANT !!

FFT real output sequence New numbering Prefix

0-4-1-5-2-6-3-7 0-1-2-3-5-6-7 0-7

8_12_9_13_10_14_11_15 8-9-10-11-12-13-14-15 8-15

16_20_17_21_18_22_19_23 16-17-18-19-20-21-22-23 16-23

24_28_25_29_26_30_27_31 24-25-26-27-28-29-30-31 24-31

ADC

64ch

8ch x 12 bit

(32ch interleaved)

16 out x 4 ch each x 12 bit

40 Mbps

PFB Reorder FFT

Amp EQ

Quant

X eng

Quant

S eng

QDR

transpose

QDR

transpose and

reorder per

antenna

Following the
X-engine branch

consider in the first iteration phase

correction factors all zeroes

Phase EQ

1
8

1
9

F engine

Equalise amplitude and pass data to be quantized to 4 bits and sent to the
X engine over XAUI 18 bit precision is maintained so that phase corrections

can be added to the data stream going to the fft imaging system.

Amp EQ0

(bitwidth fft) 18.17 *

(gain factor) 32.00 =

50.17 b

2
0

F engine

Phase corrections preparations

At the beginning all coefficients
are set to zero and data has to

send to the x-engine

c_mult details

(bitwidth fft) 18.17 *

(phase correction) 16.15 =

35.32 b

2
1

F engine

Quantization

From 18.17 (x2) to 4.3 (x2), quant_x_eng 32 bit

quant_x_eng

a0c0, a0c1, …, a0c1023, a1c0, a1c1, …, a7c1023

a8c0, a8c1, …, a8c1023, a9c0, a9c1, …, a15c1023

a16c0, a16c1, …, a16c1023, a17c0, a17c1, …, a23c1023

a24c0, a24c1, …, a24c1023, a25c0, a25c1, …, a31c1023

t0 t1 t 𝑀

2

 t
𝑀

2

+1 t

𝑀

2

+2 t 𝑀

2
 ∗ 𝟖

2
2

F engine

X engine expects groups of a single channel and a single antenna

Chan_reorder init

pr = [0 512];

n_chan = 1024;

map = []

for i=[0:(n_chan/2)-1]

 map=[map, pr+i];

end

(result map:

0 512 1 513 2 514 3 515...

...510 1022 511 1023)

t0 t1 tend

a0c0 a0c1 a7c1023

a8c0 a8c1 a15c1023

a16c0 a16c1 a23c1023

a24c0 a24c1 a31c1023

tR0 tR1 tRend

a0c0 a0c512 a7c1023

a8c0 a8c512 a15c1023

a16c0 a16c512 a23c1023

a24c0 a24c512 a31c1023

X0 X1 X8191

2
3

F engine

X engine expects groups of a single channel and a single antenna

tR0 tR1 tR1024 tRend

a0c0 a0c512 a1c0 a7c1023

a8c0 a8c512 a9c0 a15c1023

a16c0 a16c512 a17c0 a23c1023

a24c0 a24c512 a25c0 a31c1023

X0 X1 X1024 X8191

C0 C1 C1022 C1023

R0 X0 X1 X1022 X1023

R1 X2^10 X1025 X(2^10)*2-2 X(2^10)*2-1

R2 X(2^10)*2 X(2^10)*2+1 X(2^10)*3-2 X(2^10)*3-1

R1022 X(2^10)*1022 X(2^10)*1022+1 X(2^10)*1023-2 X(2^10)*1023-1

R1023 X(2^10)*1023 X(2^10)*1023+1 X(2^10)*1024-2 X(2^10)*1024-1

Using QDR1 as 210 x 210 matrix

Μ =

1024*1024 cells means also 128 spectra of each antenna

(8192 needed for one spectra)

2
4

F engine

C0 C1 C1022 C1023

R0-7
Spectrum1 of 32 antennas in 8 row (8x1024)

R8-15
Spectrum2 of 32 antennas in 8 row (8x1024)

R16-32
Spectrum3 of 32 antennas in 8 row (8x1024)

…

R1016-1023
Spectrum128 of 32 antennas in 8 row (8x1024)

Μ =

1024*1024 cells means also 128 spectra of each antenna

(8192 needed for one spectra)

X engine expects groups of a single channel and a single antenna

2
5

F engine

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15 x15 x11 x7 x3 x14 x10 x6 x2 x13 x9 x5 x1 x12 x8 x4 x0

Considering time moving from left to right, the QDR transpose data as shown below

t

t

X engine expects groups of a single channel and a single antenna

F engine

C0 C1 C1022 C1023

R0
X0 X2^10 X(2^10)*1022 X(2^10)*1023

R1
X1 X2^10+1 X(2^10)*1022+1 X(2^10)*1023+1

R2
X2 X2^10+2 X(2^10)*1022+2 X(2^10)*1023+2

R1022
X1022 X(2^10)*2-2 X(2^10)*1023-2 X(2^10)*1024-2

R1023
X1023 X(2^10)*2-1 X(2^10)*1023-1 X(2^10)*1024-1

ΜT =

X engine expects groups of a single channel and a single antenna

2
6

2
7

F engine

t0 t1 t2 t8 t2^10 t2^20

a0c0 a1c0 a2c0 a0c0 a0c1 a7c1023

a8c0 a9c0 a10c0 a8c0 a8c1 a15c1023

a16c0 a17c0 a18c0 a16c0 a16c1 a23c1023

a24c0 a25c0 a26c0 a24c0 a24c1 a31c1023

X0 X2^10 X(2^10)*2 X(2^10)*8 X1 X(2^20)

ΜT =

Every 8 column the same frequency channel is referring to the next spectra,

next channels are grouped by 8x128 (=1024=2^10)

X engine expects groups of a single channel and a single antenna

F engine

t0 t1 t2 t127 t128 t2^10 t2^20

a0c0 a0c0 a0c0 a0c0 a1c0 a0c1 a7c1023

a8c0 a8c0 a8c0 a8c0 a9c0 a8c1 a15c1023

a16c0 a16c0 a16c0 a16c0 a17c0 a16c1 a23c1023

a24c0 a24c0 a24c0 a24c0 a25c0 a24c1 a31c1023

X0 X(2^10)*8 X(2^10)*16 X(2^10)*1016 X2^10 X1 X(2^20)

ΜT8 =

The reorder map at this stage groups data by 8 (let’s call MT8)

[0 8 16 24 32 … 1008 1016 1 9 17 … 999 1007 1015 1023]

Therefore grouping same channels of different acquisitions

X engine expects groups of a single channel and a single antenna

2
8

2
9

F engine

X engine expects groups of a single channel and a single antenna

F engine

Uncram split a 32 bit word in two separate streams of 16 bit (high and low)

Square transposer presents a number of parallel inputs serially on the same

number of output lines.

3
0

X engine expects groups of a single channel and a single antenna

3
1

F engine

a0c1 … … … a1c0 a0c0 … a0c0 a0c0

a8c1 … … … a9c0 a8c0 … a8c0 a8c0

a16c1 … … … a17c0 a16c0 … a16c0 a16c0

a24c1 … … … a25c0 a24c0 … a24c0 a24c0

y1 y3 y255

y2 y4 y256

y257

y258

y2049

128t

8x128t t1025

y2050

=
… y5 y3 y1

… y6 y4 y2

… … y5 y2 y1

… … y8 y4 y3

X engine expects groups of a single channel and a single antenna

3
2

F engine

 … … … a16c0 a0c0 a16c0 a0c0

 … … … a24c0 a8c0 a24c0 a8c0

 … … … a16c0 a0c0 a16c0 a0c0

 … … … a24c0 a8c0 a24c0 a8c0

y1 y2 y5

y3 y4 y7

y6

y8

=
… … y5 y2 y1

… … y8 y4 y3

t

t0 t1 … t2

X engine expects groups of a single channel and a single antenna

3
3

F engine

Reorder_one_ant_a_time init

spec_chan = 10; % mask parameter

block_size = 7; % mask parameter

partial_reorder = [0:2:2^block_size - 1]

reorder = []

for n = [0:1]

 reorder = [reorder, [partial_reorder]+n];

end

(result: [0 2 4 6 ... 126 1 3 5 7 ... 127])

X engine expects groups of a single channel and a single antenna

3
4

F engine

 … a16c0 a0c0 … a0c0 a0c0 a0c0

… a24c0 a8c0 … a8c0 a8c0 a8c0

… a16c0 a0c0 … a0c0 a0c0 a0c0

… a24c0 a8c0 … a8c0 a8c0 a8c0

y1 y5 y9

y3 y7 y11

y65

y67

=
… … y9 y5 y1

… … y11 y7 y3

t

t1 t2 t3

y69

y71

t64 t65

X engine expects groups of a single channel and a single antenna

3
5

F engine

tZ8 tZ7 tZ6 tZ5 tZ4 tZ3 tZ2 tZ1 tZ0

a4c0 a19c0 a3c0 a18c0 a2c0 a17c0 a1c0 a16c0 a0c0

a12c0 a27c0 a11c0 a26c0 a10c0 a25c0 a9c0 a24c0 a8c0

a4c0 a19c0 a3c0 a18c0 a2c0 a17c0 a1c0 a16c0 a0c0

a12c0 a27c0 a11c0 a26c0 a10c0 a25c0 a9c0 a24c0 a8c0

64t 64t 64t 64t 64t 64t 64t 64t 64t

tZ17 tZ16 tZ15 tZ14 tZ13 tZ12 tZ11 tZ10 tZ9

a16c1 a0c1 a23c0 a7c0 a22c0 a6c0 a21c0 a5c0 a20c0

a24c1 a8c1 a31c0 a15c0 a30c0 a14c0 a29c0 a13c0 a28c0

a16c1 a0c1 a23c0 a7c0 a22c0 a6c0 a21c0 a5c0 a20c0

a24c1 a8c1 a31c0 a15c0 a30c0 a14c0 a29c0 a13c0 a28c0

64t 64t 64t 64t 64t 64t 64t 64t 64t

64 clock cycle for a complete set of 128 samples of the same frequency

channel of 2 antennas (complex number, r/i 4.3 bit each)

(read this table from right to left and bottom up!)

3
6

F engine

X engine data order

Considering the original number the X-engine

will receive data in this order

FFT real output sequence New numbering Prefix

0-4-1-5-2-6-3-7 0-1-2-3-4-5-6-7 0-7

8_12_9_13_10_14_11_15 8-9-10-11-12-13-14-15 8-15

16_20_17_21_18_22_19_23 16-17-18-19-20-21-22-23 16-23

24_28_25_29_26_30_27_31 24-25-26-27-28-29-30-31 24-31

tZ15 tZ14 tZ13 tZ12 tZ11 tZ10 tZ9 tZ8 tZ7 tZ6 tZ5 tZ4 tZ3 tZ2 tZ1 tZ0

a23 a7 a22 a6 a21 a5 a20 a4 a19 a3 a18 a2 a17 a1 a16 a0

a31 a15 a30 a14 a29 a13 a28 a12 a27 a11 a26 a10 a25 a9 a24 a8

32 bit x 64t each

antennas interlived by 8 bit

tZ15 tZ14 tZ13 tZ12 tZ11 tZ10 tZ9 tZ8 tZ7 tZ6 tZ5 tZ4 tZ3 tZ2 tZ1 tZ0

a23 a7 a19 a3 a22 a6 a18 a2 a21 a5 a17 a1 a20 a4 a16 a0

a31 a15 a27 a11 a30 a14 a26 a10 a29 a13 a25 a9 a28 a12 a24 a8

the final sequence is

Packing data to send over XAUI CX4 to X engine ROACH

The 'antenna' number is used to index the
packets which make up one integration.

Data is tagged with a ‘mcnt’ number and
sync and eof headers.

These are later decoded and used for error
checking and data ordering in the X-engines

F engine

3
7

3
8

…packaging…

data in: 128 samples * 2 ant * 8b each = 32b * 64t = 32 words * 64b

ant_bits = 4 (24 = 16 antennas in dual pol, instead of 32 ant single pol)
nwrd_bits = 5 (25 = 32 payload length)

clk_cnt #bits = 48 + ant_bits + nwrd_bits + 1

(the last additional bit is needed to concatenate and validate 64bit of data)

mcnt #bits = 48 (counts the channel frequencies)

header #bits = 64 = mcnt[48] + zeroes pads + ant[4]

F engine

3
9

ADC

64ch

16ch x 12 bit

(32ch interleaved)

16 out x 4 ch each x 12 bit

40 Mbps

PFB Reorder FFT

Amp EQ

Quant

S eng

QDR

transpose

Following the
S-engine branch

phase corrections allow to

proceed with the spatial FFT

Phase EQ

Quant

X eng

QDR

transpose and

reorder per

antenna

4
0

F engine

Phase corrections done!

Phase corrections are
obtained multiplying the
complex conjugate of the

new coefficents

c_mult details

(bitwidth fft) 18.17 *

(phase correction) 16.15 =

35.32 b

4
1

F engine

Quantization

From 35.32 (x2) to 4.3 (x2), quant_fft 32 bit

quant_fft

a0c0, a0c1, …, a0c1023, a1c0, a1c1, …, a7c1023

a8c0, a8c1, …, a8c1023, a9c0, a9c1, …, a15c1023

a16c0, a16c1, …, a16c1023, a17c0, a17c1, …, a23c1023

a24c0, a24c1, …, a24c1023, a25c0, a25c1, …, a31c1023

t0 t1 t 𝑀

2

 t
𝑀

2

+1 t

𝑀

2

+2 t 𝑀

2
 ∗ 𝟖

4
2

The Fourier Imager (S engine) expects blocks
of all antennas per one frequency channel

This is done by using the second Corner Turn Memory (QDR)
available aboard in the ROACH

F engine

4
3

The logic driving the QDR chip is always the same

4
4

The Fourier Imager (S engine) expects blocks of all antennas per one frequency channel

t0 t1 t1024 tend

a0c0 a0c1 a1c0 a7c1023

a8c0 a8c1 a9c0 a15c1023

a16c0 a16c1 a17c0 a23c1023

a24c0 a24c1 a25c0 a31c1023

X0 X1 X1024 X8191

C0 C1 C1022 C1023

R0
X0 X1 X1022 X1023

R1
X2^10 X1025 X(2^10)*2-2 X(2^10)*2-1

R2
X(2^10)*2 X(2^10)*2+1 X(2^10)*3-2 X(2^10)*3-1

R1022
X(2^10)*1022 X(2^10)*1022+1 X(2^10)*1023-2 X(2^10)*1023-1

R1023
X(2^10)*1023 X(2^10)*1023+1 X(2^10)*1024-2 X(2^10)*1024-1

Using QDR1 as 210 x 210 matrix

Μ =

1024*1024 cells means also 128 spectra of each antenna

F engine

4
5

The Fourier Imager (S engine) expects blocks of all antennas
per one frequency channel

C0 C1 C1022 C1023

R0
X0 X2^10 X(2^10)*1022 X(2^10)*1023

R1
X1 X2^10+1 X(2^10)*1022+1 X(2^10)*1023+1

R2
X2 X2^10+2 X(2^10)*1022+2 X(2^10)*1023+2

R1022
X1022 X(2^10)*2-2 X(2^10)*1023-2 X(2^10)*1024-2

R1023
X1023 X(2^10)*2-1 X(2^10)*1023-1 X(2^10)*1024-1

ΜT =

F engine

4
6

t0 t1 t2 t8 t2^10 t2^20

a0c0 a1c0 a2c0 a0c0 a0c1 a7c1023

a8c0 a9c0 a10c0 a8c0 a8c1 a15c1023

a16c0 a17c0 a18c0 a16c0 a16c1 a23c1023

a24c0 a25c0 a26c0 a24c0 a24c1 a31c1023

X0 X2^10 X(2^10)*2 X(2^10)*8 X1 X(2^20)

ΜT =

Every 8 column the same frequency channel is referring to the next spectra,

next channels are grouped by 8x128 (=1024=2^10)

The Fourier Imager (S engine) expects blocks of all antennas
per one frequency channel

4
7

F engine

S engine data order

Considering the original number the S-engine

will receive data in this order

FFT real output sequence New numbering Prefix

0-4-1-5-2-6-3-7 0-1-2-3-4-5-6-7 0-7

8_12_9_13_10_14_11_15 8-9-10-11-12-13-14-15 8-15

16_20_17_21_18_22_19_23 16-17-18-19-20-21-22-23 16-23

24_28_25_29_26_30_27_31 24-25-26-27-28-29-30-31 24-31

t2^20 t3072 t2048 t1024 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

a7c1023 a0c3 a0c2 a0c1 a1 a0 a7 a6 a5 a4 a3 a2 a1 a0

a15c1023 a8c3 a8c2 a8c1 a9 a8 a15 a14 a13 a12 a11 a10 a9 a8

a23c1023 a16c3 a16c2 a16c1 a17 a16 a23 a22 a21 a20 a19 a18 a17 a16

a31c1023 a24c3 a24c2 a24c1 a25 a24 a31 a30 a29 a28 a27 a26 a25 a24

4
8

S engine data order

F engine

t2^20 t3072 t2048 t1024 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

a7c1023 a0c3 a0c2 a0c1 a1 a0 a7 a6 a5 a4 a3 a2 a1 a0

a15c1023 a8c3 a8c2 a8c1 a9 a8 a15 a14 a13 a12 a11 a10 a9 a8

a23c1023 a16c3 a16c2 a16c1 a17 a16 a23 a22 a21 a20 a19 a18 a17 a16

a31c1023 a24c3 a24c2 a24c1 a25 a24 a31 a30 a29 a28 a27 a26 a25 a24

t2^20 t3072 t2048 t1024 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

a7c1023 a0c3 a0c2 a0c1 a4 a0 a7 a3 a6 a2 a5 a1 a4 a0

a15c1023 a8c3 a8c2 a8c1 a12 a8 a15 a11 a14 a10 a13 a9 a12 a8

a23c1023 a16c3 a16c2 a16c1 a20 a16 a23 a19 a22 a18 a21 a17 a20 a16

a31c1023 a24c3 a24c2 a24c1 a28 a24 a31 a27 a30 a26 a29 a25 a28 a24

the final sequence is

128 samples of the

frequency channel 0

128s x

freq ch 1

……………………………………………

4
9

Packing data to send over XAUI CX4 to S engine ROACH

The S-engine integration length is the
payload length by the number of windows
(aka packets) per frequency channel.

The 'antenna' number is used to index the
packets which make up one integration.
Using standard X-engine ordering logic
should sort things out on the rx side.

Data is tagged with a ‘mcnt’ number and
sync and eof headers.

These are later decoded and used for error
checking / data ordering in the spatial
imager and X-engines

F engine

5
0

Control Signals and Registers

SYNC GEN

We tag on some logic after the sync gen
to ensure that a sync pulse arrives the
clock before the adc_channel sync,
which signifies the arrival of the first
multiplexed channel on the adc lines

F engine

2^N periods:
fft mux -- 13

QDR transpose -- 11
post QDR reorder -- 10

reorder 1_ant_a_time -- 7
LCM(13,11,10,7) = 10010

5
1

ADC SNAP

Stores the AD samples of the selected channel in a block RAM

F engine

adc_sel in

adc_bram out
adc_sum_sq out

selects the AD output line (0-3, 4-7, …, 28-31)

1024*32b block ram
the square sum of the AD chan selected

Control Signals and Registers

5
2

ADC SYNC TEST

The adc_sync_test reg allows the user to confirm that all 8 ADC chips
are syncing together, and that these ADC syncs are arriving the clock
before the master sync.

If all is going well, the register should show one

F engine

Control Signals and Registers

CTRL_SW: The ctrl_sw reg is used to manage the F engine

F engine

5
3

Control Signals and Registers

5
4

X_SNAP

You can see a snap of each stage of the
F-engine by selecting a source, a
period (only in case the source is a
sync signal), and the output is stored
to a 1024x32b block ram

(more details in next page)

F engine

Control Signals and Registers

5
5

F engine

snap_sel_reg in
sync_sel_reg in

x_snap/snap/bram out

selects the source
sel. period for sync sources
1024*32b block ram

Control Signals and Registers

5
6

Control Signals and Registers

F engine

STATUS

All the status flags are collected
in the status register

The X-engine Correlator

Roach-2

X engine

5
7

5
8

X engine

Accept 32 data words (64 bits each) from roach, plus a 1 word header
(16 words contains 128 samples of a single frequency for a single antenna * 2)

Getting data from F engine

5
9

X engine

Packetizes data coming in over a XAUI interface. A packet consists of a 64 bit
header (48 bits of "mcnt" and 16 bits of antenna), followed by 64 * "payload" bits.

"Mcnt" (master count) is a counter which keeps track of channel frequencies and
how many packets have been transmitted since the last "mrst".

Getting data from F engine

6
0

X engine

Decodes packet header in mcnt and ant

Getting data from F engine

6
1

X engine

Decodes packet header to configure xaui pkt data for reorder

X engines

There are 2 X-engine in the design,
the coming in channel frequencies are splitted by even and odd

6
2

X engine

Demux gbe select even or odd frequencies (last bit of mcnt)

X engines

Slice: n_xeng_bits - share_bits

6
3

X engine

The BUFFER block collects data in a
dual port ram and release it in a
continuous flow to the x-engine

X engines

6
4

X engines

X engine

TVG block: Test Vector Generator

There is a way to simulate the data
coming in to test the stand alone system

6
5

X engines

X engine

The CASPER X engine is a streaming architecture block where complex
antenna data is input and accumulated products (for all cross-multiplications)
are output in conjugated form. Because it is streaming with valid data
expected on every clock cycle, data is logically divided into windows. These
windows can either be valid (in which case the computation yields valid,
outputted results) or invalid (in which case computation still occurs, but the
results are ignored and not presented to the user).

(CASPER Library Reference Manual, last updated November 17, 2008)

6
6

X engine

CASPER Windowed X-Engine block

Data is input serially: antenna A, antenna B, antenna C etc. Each antenna’s data consists of dual
polarization, complex data. The bit width of each component number can be set as a parameter, n bits. The
X-engine thus expects these four numbers of n bits to be concatenated into a single, unsigned number.

CASPER convention dictates that complex numbers are represented with higher bits as real and lower bits
as imaginary. The top half of the input number is polarization one and the lower half polarization two.

t256 t255 t128 t127 t0

… C1real B1real B1real A1real A1real most_sig 4b

… C1imag B1imag B1imag A1imag A1imag 4b

… C2real B2real B2real A2real A2real 4b

… C2imag B2imag B2imag A2imag A2imag least_sig 4b

6
7

X engine

The x-engine assumes that antennas are dual polarisation, and so between a pair
of antennas, i and j, the correlator output gives all 4 polarisation combinations:

xi,xj
yi,yj
xi,yj
yi,xj

If antennas are single pol, then you can input four antennas -- a,b,c,d -- with the

mapping xi -> a, yi -> b, xj -> c, yj -> d. The output is then:
ac
bd
ad
bc

So you recover all the combinations you want. This is how the X-engine gets all

the baselines with only 16 antennas. Half of the 32 are designated 'x' pol, and the
other half 'y' pol.

CASPER Windowed X-Engine block

6
8

X engine

The windowed X-engine will produce num baselines = 𝑛_𝑎𝑛𝑡𝑠 ∗
𝑛_𝑎𝑛𝑡𝑠+1

2
 valid outputs.

The output of the X-engine configured for N antennas can be mapped into a table with
𝑛_𝑎𝑛𝑡𝑠

2
+ 1 columns

and N rows as follows (bracketed values are from previous window):

1st 0×0 (0×N) (0×(N−1)) (0×(N−2)) …

2nd 1×1 0×1 (1×N) (1×(N−1)) …

3rd 2×2 1×2 0×2 (2×N) …

4th 3×3 2×3 1×3 0×3 …

5th 4×4 3×4 2×4 1×4 …

6th 5×5 4×5 3×5 2×5 …

… … … … … …

CASPER Windowed X-Engine block

6
9

X engine output order baselines for 16 antennas
read from right to left, from top to bottom

The green cells are the only ones that the xeng block actually outputs because there is a
descramble block inside there that removes the duplicated "red" baselines

7
0

X engine

X engines

Sync and Valid signals are counted and registered

7
1

X engine

X engines

SNAP_XENG0

There is also a snap block which allows to read from bram a snap of the
computed baselines

7
2

X engine

Vector Accumulator and Packetizer

VECTORS:

16*17/2 (baselines) *
1024/2 (channels) *
4 (stokes parameter) *
2 (width re/im)

= 557056 size

using QDR0 and QDR1

X engine

This block generates packets from a
datastream.

Packets are created with a fixed header
followed by a user-specified number of
64-bit options.

Requires a 64-bit data stream.

Init:

vector_bits = ceil(log2(vector_len));

pkt_len=2^(pkt_bits);

7
3

Vector Accumulator and Packetizer

7
4

X engine

Sending data over 10GbE of the 2 X-Engine accumulations

Mux_Out is simply the semaphore for the packet traffic, the tx_pkt0 and tx_pkt1
signals are the green light for the vector accumulator pack_outs

In case of collision vacc_dout0 has priority

7
5

Main Control Signals and Registers

X engine

INPUT REGISTERS

7
6

Main Control Signals and Registers

X engine

Keeping tracks of packets

7
7

Main Control Signals and Registers

X engine

10 GbE configurations and stats

7
8

Main Control Signals and Registers

X engine

ROACH’S LEDS

7
9

The S-engine (Spatial FFT)

Roach-3

S engine

8
0

S engine

Accept 32 data words (64 bits each) from roach, plus a 1 word header (16 words contains 128 samples
of a single subband of each antenna). Input data can be also simulated commanding a register.

Getting data from F engine

8
1

S engine

Getting data from F engine

4 words containing 32 antennas of a single frequency in order.
128 x 4 = 512 words contain 128 ordered antenna for a single frequency.

We send in blocks of 25, indexing with an “antenna” number

8
2

S engine

Buffering and preparing data for Spatial FFT

Some debug counters

The Spatial FFT works in dual pol, we will see
later on how to handle a single pol

“Antennas”, here, are dual pol

 You can snap this point

8
3

S engine

Spatial FFT - Stage 1

4 antennas per clock 8 clocks for a complete set

8
4

S engine

Spatial FFT - Stage 1

Each antenna subband processed separately

8
5

S engine

Spatial FFT - Stage 1

Any kind of window (registers preloaded) applied

8
6

S engine

Spatial FFT - Stage 1

Subband masks
(if needed, useful either for debug and to filter interference)

8
7

S engine

Zero padding of the second polarization

Spatial FFT - Stage 1

8
8

S engine

Spatial FFT - Stage 1

Keep control of overflows
(Sets the shifting schedule through the FFT to prevent overflow. Bit 0 specifies the behavior of stage 0, bit 1 of stage

1, and so on. If a stage is set to shift (with bit = 1), then every sample is divided by 2 at the output of that stage.)

8
9

S engine

Spatial FFT - Stage 1

Computes the Fast Fourier Transform with 2N channels for time samples
presented 2P at a time in parallel.

Outputs 8 beamlets per clock and it takes 8 clocks for all rows.

9
0

S engine

Spatial FFT - Tranpose

Transpose a 23 x 23 Matrix

9
1

S engine

Spatial FFT – 2D FFT stage

The windowed FFT along the
second dimension is similar to

the first one

It’s a 16 streams x 8 clocks deep

9
2

S engine

Spatial FFT – Power spectrum

Squares real and imaginary components of
complex input and adds them.

This is done for each beam, and then,

there is a cast from 36.35 to 25.24.

9
3

S engine

Spatial FFT – Accumulation

Data reinterpreted as unsigned 32bit
is accumulated by 128,
and then concatenated

9
4

S engine

Spatial FFT – Integration

Data is accumulated, serialized, and then quantized

9
5

S engine

Spatial FFT – Parallel to serial

(…going into the vector accumulator…)

Serialization is done registering data into
single port RAMs and then a MUX loops

around addresses.

Previous accumalations guarantees that
there is enough time to serialize before

overlap.

9
6

S engine

Spatial FFT – Quantization

You can apply an accumulation factor scale by programming a register (default 1)

The cast shape is: 48.16 16.0

9
7

S engine

Spatial FFT – QDR, data ready for processing

Data is reinterpreted as unsigned 32.0 to fit the requirements of
the ROACH corner turn memory (QDR, CASPER stdlib)

The vector length (# cycles) is set to 1024*32*4 = 131072

It is possible to get the 2D FFT simply by reading the snap bram
block on the 10/100 Mb Ethernet port using the katcp library

9
8

Main Control Signals and Registers

S engine

There are few output registers useful to debug
the system parameters such master counts or

even number of iterations of the QDR

9
9

Main Control Signals and Registers

S engine

Most of the controls are commanded with a 32
bit register “ctrl_sw” where sets of bits have
several meaning, such:

- Shifting schedule for the FFT (both x and y)

- Zeroes mask for the FFT (both x and y)

- Various Reset signals

1
0

0

Main Control Signals and Registers

S engine
Even the output status is a sequence of bit

concatenated in a 32 bit word

101

Acronyms

BEST Basic Elements for SKA Training
CASA Common Astronomy Software Applications
CASPER Collaboration for Astronomy Signal Processing and Electronics Research
EDK Embedded Development Kit
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
IDE Integrated Development Environment
IF Intermediate Frequency
IP Intellectual Property
NRAO National Radio Astronomy Observatory
PFB Poliphase Filter Bank
QDR Quad Data Rate
RF Radio Frequency
ROACH Reconfigurable Open Architecture Computing Hardware
SKA Square Kilometer Array

102

Bibliography

[1] Parsons, A., et al., "Digital Instrumentation for the Radio Astronomy Community",
astro-ph/0904.1181, April 2009.

[2] Montebugnoli, S.; Bianchi, G.; Monari, J.; Naldi, G.; Perini, F.; Schiaffino, M. “BEST:
Basic Element for SKA Training”, Wide Field Science and Technology for the Square
Kilometre Array, Proceedings of the SKADS Conference held at the Chateau de Limelette,
Belgium, 3-6 November 2009, p. 331-336. (2010)

