
 1

Multi-Beam FITS (MBFITS) format
data storage module in ESCS/Nuraghe

P. Libardi, S. Righini, A. Orlati

IRA 461/12

 2

1. From the origins to a standard format

MBFITS is a raw data format for multi-beam multi-receiver/backend single dish
telescopes.
It was originally created to be used at the IRAM 30m, APEX 12m and Effelsberg
100m mm/submm telescopes, but this format is suitable for single-dish bolometers
and heterodyne observations.

The MBFITS format was structurally derived from the ALMA Test Interferometer
FITS (ALMA-TI FITS) raw data format. MBFITS is based on the scan-subscan-
integration scheme used by ALMA-TI FITS and retains many of its keywords. It uses
the FITS standard key-value format and the World Coordinate System representation.
While keeping most of the original design concept from ALMA TI-FITS, new
structures and keywords have been added to accommodate multiple beam
observations and multiple frontend and backend combinations. These changes were
required by telescopes that decided to adopt MBFITS in a single-dish configuration.
The MBFITS format can now be considered to be an independent format.

Since July 2007 the MBFITS format description is an officially registered FITS
convention.
The Registry of FITS Conventions (http://fits.gsfc.nasa.gov/fits registry.html)
provides a central and authoritative repository for documenting conventions that have
been developed by the FITS user community for storing and transmitting various
types of information in FITS format data files.

The structure of the MBFITS format has been described in many articles, and new
version are currently under development as new requirements emerge from
observations.

List of the most relevant documents to be used as reference for the new MBFITS
format:

• Muders, D., Polehampton, E. & Hatchell, J., 2007, “Multi-beam FITS Raw
Data Format”, APEX Report APEX-MPI-ICD-0002, Rev. 1.63

• Wells, D.C., Greisen, E.W. & Harten, R.H., 1981, “FITS - a Flexible Image
Transport System”, A&AS, 44, 363-+

• Lucas, R. and Glendenning, B., 2001, “ALMA Test Interferometer Raw Data
Format”, ALMA Report ALMA-SW-0015

• Greisen, E.W. & Calabretta, M.R., 2002, “Representations of world
coordinates in FITS”, A&A, 395, 1061-1075

 3

2. Data structure and time frames

The MBFITS format is structured as a set of extension table, as show in Figure 1.
Data are stored as key-value pairs or as information in binary table sections.

From the MBFITS reference manual we get a description of the most relevant time
frames, from shortest to longest:

• dump: the smallest interval of time for which a set of correlated data can be
accumulated and output from the backend;

• integration: a set of dumps, all identical in configuration (except for the
antenna motion and some others), that is accumulated and forms the basic
recorded unit;

• subscan: a set of integrations achieved while the antennas complete an
elemental pattern across the source, possibly while performing frequency
switching, nutator switching, etc. (previous to v.1.54: observation);

• scan: a set of subscans with a common goal, e.g.: a pointing scan, a focus scan,
an atmospheric amplitude calibration scan, a correlation scan on a continuum
source or a spectral line source.

This subdivision reflects in the structure of the MBFITS tables as shown on the left
side of Figure 1.

Figure 1 – MBFITS structure

 4

3. Software for data analysis

As a consequence of the adoption of this new format in some telescopes, astronomers
and software developers had to create new tools or to adapt data reduction and
analysis software.
The following list is not exhaustive as development is always ongoing:

• Toolbox – MPIfR, Effelsberg
The MBFITS data can be inspected and edited with any program that
understands FITS Format (e.g. fv - FITS viewer). However, most users might
prefer a kind of pre-reduced view where the amplitude of the scan is calibrated
and with actual arcseconds for the scanning axis. This is provided by the
"Toolbox" program.

• MIRA (Multichannel Imaging and Calibration Software for Receiver Arrays)
– IRAM
MIRA is the new software developed at IRAM to replace the previous tool
OTFCAL for the calibration of the new IMBFITS raw data at the 30m
telescope.

• BoA (BOlometer Array Analysis Software) – MPIfR, AIfA, APEX et al.
BoA is a newly designed software package for the reading, handling, and
analysis of bolometer array data. The primary goal of BoA is to handle data
from LABOCA, the Large APEX Bolometer Camera, both for online
visualization and offline processing. BoA can also be used to process data
acquired with other instruments such as ASZCa (the APEX SZ Camera) or
MAMBO at the IRAM 30-meter telescope. BoA includes most of the relevant
functionalities of the current reduction packages (MOPSIC, NIC, SURF). The
major difference to them is that BoA is written in a programming environment
that is (hopefully) easier to modify, maintain, and re-use.
Moreover, BoA naturally interfaces with APECS and the MBFITS format.
The design of BoA has been done with two major goals in mind: to provide a
comprehensive tool for the visualisation, reduction and analysis of data from
the new generation of bolometer arrays, and to facilitate the extension and
modification of the software by users with no strong programming
background.

• Fitsplode - Steve Torchinsky @ Nançay Radio Astronomy Facility
It is a data extractor for spectral line data in FITS files which use binary tables.
In particular, it works for raw data from Effelsberg (in MBFITS format) and
raw data from Arecibo (in CIMAFITS format). It explodes the file into
individual FITS files each with one spectrum. These files can then be read into
your favourite data processing program, such as for example xs by Per
Bergman, and others, which do not read binary tables in FITS files, but which
do read simple FITS files.

 5

4. MBFITS implementation: hierarchical structure

The original MBFITS format was intended to be written as one file in order to
facilitate transporting the data from the observatory to the users. However, the FITS
standard requires the binary tables to be written sequentially in the file. When writing
an MBFITS file during the actual observations, the underlying library (e.g. CFITSIO
in case of APEX) thus always needs to rearrange the tables to make room for the new
incoming data. To avoid this complication, starting from version 1.6 of the MBFITS
reference document, the FITS hierarchical grouping standard (see Jennings et al.
1997) is employed.

The MBFITS hierarchical grouping directory structure is defined as follows (see Fig.
1):

• Main directory name according to the value of data relevant to the observation

• Inside this main directory, there are the files for the scan-level tables:
o The grouping table file: GROUPING.fits
o The scan table file: SCAN.fits
o The FEBEPAR table files for each FEBE combination:

<FEBE name>-FEBEPAR.fits

• The actual data is stored in subdirectories, one for each subscan, named according to
the subscan number.
Each subdirectory contains the following types of member files:

o The MONITOR table file: MONITOR.fits
o One ARRAYDATA table file for each FEBE combination and baseband:

<FEBE name>-ARRAYDATA-<Baseband number>.fits
o One DATAPAR table file for each FEBE combination:

<FEBE name>-DATAPAR.fits

4.1. GROUPING Table
This table exists only in the hierarchical implementation of the MBFITS format and it
is created once for each scan.
It is used to store the locations of the member files, plus other details which can be
exploited to speed up searching when reading the files.

4.2. SCAN Table
It is stored for every scan. It contains parameters which do not change among the
subscans, including:

• telescope and observatory parameters
• time system
• coordinate system
• velocity system
• project ID
• target of the scan and its coordinates
• observing mode
• pointing model coefficients

 6

4.3. FEBEPAR Table
The FEBEPAR table is stored per FEBE (FrontEnd – BackEnd) combination for each
scan and contains the frontend-backend setup. Parameters common to all FEBEs are
written in the SCAN table.
It includes:

• FEBE setup: number of pixels, polarisations and basebands
• pointing model coefficients specific to this FE
• calibration parameters specific to this FEBE

4.4. ARRAYDATA Table
A new ARRAYDATA table is created for each subscan, for each FEBE and for each
baseband. It stores the data description (header) and the data (table).
It includes:

• frequency band setup: frequency, bins (freq. channels), polarisations, line ID
• data axes description

If some parameters change for the individual subscan with respect to the general value
stored in the SCAN table, data analysis applications should get these values from the
ARRAYDATA table rather than from the SCAN one.

4.5. DATAPAR Table
A new DATAPAR table is created for each subscan and for each FEBE.
Parameters common to all the subscans are written in the SCAN table, while the
FEBE setup is recorded in the FEBEPAR table (also assumed to be constant for all
subscans).
The DATAPAR table contains those data-associated parameters which change with
the integration, but not the data themselves – as they are stored in the ARRAYDATA
table.
The table includes:

• time and coordinates information, specific to this subscan and integration
• interpolated data from the MONITOR table, resampled to the timestamps of the

midpoints of the integrations, as given by the MJD timestamp.

4.6. MONITOR Table
This table stores raw monitoring data (real-time updates other than the backend data)
at their natural rate, i.e. not synchronised to backend dump times.
The monitor data are stored as time-keyword-units-values.
The update intervals for any monitor stream are thus fully flexible.
It is recommended that the telescope control system should call for updates on
monitor points at least at the beginning and end of the scans. As many of these as
possible should be measured at these times. For points where a new measurement is
not possible the last measurement should be saved again in the MONITOR table with
its original timestamp. In this way, interpolation between points to fill in the
DATAPAR table will be possible even without access to previous/later scan data.
MONITOR table updates:

• at the beginning/end of scans: calibration data, pointing data, radiometer data,
weather station data

• at the beginning of integrations: frequencies, current real antenna positions
• at the end of observations: current real antenna positions

 7

5. ESCS (Enhanced Single-dish Control System) and Nuraghe

At the Medicina telescope the observers operate with ESCS (Enhanced Single-dish
Control System). A different “flavour” of the system, called Nuraghe, manages the
Sardinia Radio Telescope antenna and several of its devices.
ESCS/Nuraghe was developed in the Alma Common Software (ACS) framework,
which is optimised for the production of control software to handle complex
instruments. From IRA-TechReport 423-08 (Orlati et al.) we can extract the
definitions to identify some elements that constitute the control system to setup and to
drive the antenna, and to store observing data into different formats:

• Subsystem
Components and table artefacts are grouped into subsystems that correspond to a
single functionality unit. A subsystem is a container of components and artefacts that
belong to the same sub-part of the whole system.

• Component
The component corresponds to the ACS/CORBA component/remote object. Each
component can implement a specific functionality that is required to realize the
system. Components have relationships between each other and/or they can
implement or realize interfaces.

• Interface
An interface defines a common way for components to access other components or
for clients to call components through common patterns. Interfaces allow to group
components that show the same services but differ in the way the services are
implemented or executed.

• Artefacts
These objects can be files, libraries or database tables that contain data or algorithms
to be used by different components as external resources.

The interactions between various components to accomplish the observations are
driven by the execution of the commanded schedule. This is realized through the code
implemented in the component ScheduleExecutor, which has been developed as a
finite state machine.
The ScheduleExecutor makes no assumptions about the implementation of the
backend and the format to store information and data: it manages a backend
component and a writer component.

6. Data sender and data receiver

Figure 2 shows the hierarchy of interfaces for the sender components (left group) and
for the receiver elements (right group) of the ESCS/Nuraghe system. In the lowest
level we drew only a couple of the interfaces currently implemented in the system.

ScheduleExecutor creates instances of the backend and of the writer implementation,
on the basis of string names that are provided by the user in the schedule files and that
identify different implementations of these components. ScheduleExecutor then
initializes these instances to setup the configuration as required by the observer in the
schedule files.

 8

On the last step of the scan start stage the ScheduleExecutor invokes the “sendData”
method for the instance of the backend, to effectively start the data transmission along
the stream that has been previously created between the instance of the backend and
the implementation of the writer.

Figure 2 – Hierarchy for the sender components’ interfaces (left)
and for the receiver elements’ interfaces (right)

To store information and data in the MBFITS format we developed a component that
implements the interface required by the ScheduleExecutor for the writer component.
We realized this interface in the new class MBFitsWriterImpl, which is an element of
the model component-container MBFitsWriter. Other elements of this model
implementation are shown in Figure 3 and will be described later: they implement the
intermediate and the low level methods between the ESCS ScheduleExecutor and the
actual storing operation to MBFITS files.
We also defined some CDB (Configuration DataBase) schemas and the corresponding
tables to store parameters relative to the different setup configurations, together with
the values describing the models used by the antenna control system.

7. MBFITS implementation of the component-container model

Figure 3 shows the UML diagram of the classes that constitute the component-
container model implemented in ESCS/Nuraghe in charge of the registration of the
device configuration and the observational data in the MBFITS format, according to
the structure described in the reference manual.
The base element activated by the ScheduleExecutor component is an instance of the
class MBFitsWriterImpl in which we implemented the methods required by the
interface of the ACS Bulk Data Transfer. This instance of the class MBFitsWriterImpl
then manages the receiving of data, their handling and the storage to MBFITS format
structures, by means of an instance for each of the following classes:

• CConfiguration
• CDataCollection
• CSecureArea
• EngineThread
• CCollectorThread

 9

7.1. CConfiguration
It is the delegate class in reading information stored in the CDB for the instance of the
component. This includes the values of the timeouts for the execution of threads to
acquire the configuration and the data from other system components, the paths and
the filenames for the definitions of the components used by the writing component-
container model.

7.2. CDataCollection
Information related to the acquisition/recording status of the observational data, in
addition to the configuration parameters of the observation and to the data themselves,
is stored in this class.
Only one instance of this class can exist for all the elements of the component-
container model implementation of the MBFITS writer. It is created in the
MBFitsWriterImpl instance and then it is assigned to the different classes to
temporary store the information provided by the devices, before it is stored to the
MBFITS tables.
It is important to note that this class is not implemented safely for multiple threads.
In order to permit proper operations with the various threads used in the component,
we instantiate a realization of the template class CSecureArea setting its parameter to
the class CDataCollection.

7.3. CSecureArea
This is a template class that implements a mechanism to protect a resource, being the
instance of the class that the template parameter is valued to. This protection enables
to manage sequential access requests to the resource. Such requests can come
asynchronously from various instances of different classes, possibly even belonging
to different threads.
The resource has to be accessed through a method implemented in this class, allowing
in this way to allocate the resource to a single applicant at a time. The allocation of
the resource by means of this method also allows to avoid the explicit release of the
resource: when the variable to which the resource is assigned goes out of scope, the
resource is released automatically and transparently to the user.

7.4. EngineThread
It is a class derived from ACS::Thread. It is used to manage the information that may
be available from the backend and other components of the ESCS/Nuraghe system to
coordinate data acquisition and its subsequent registration of the MBFITS files.
The instance of this class uses the state variables stored in the instance of the class
CDataCollection to determine the available information and to invoke methods to
store data in the MBFITS files. These methods, closely related to the structure of the
MBFITS format, are implemented in the classes MBFitsManager,
CMBFitsWriterTable, CMBFitsWriter as shown in the UML diagram of the classes
(Figure 3).
The process of data storage in the MBFITS tables is commanded by a sequence of
interactions between the instance of this class and the instances of other classes as
shown in Figures 4 to 10.

 10

Figure 3 - UML diagram of the classes that constitute the component-container model.

7.5. CCollectorThread
It is a class derived from ACS::Thread. It is used to manage the information that may
be collected from the ESCS/Nuraghe components that are not directly involved in the
acquisition of observational data. This material, such as the weather station data and
information related to the status of the tracking system, will be useful in the
subsequent analysis phases.
The MONITOR table, documented in the MBFITS file structure, is designed to record
information that is available asynchronously with respect to the backend data stream.
The implementation of this class, as a thread being independent from the management
of the observational data, matches the behaviour expected in MBFITS.
The component in charge of writing data in the MBFITS files exploits some
additional classes, closely related to the MBFITS format:

• MBFitsManager
• MBFitsWriter
• MBFitsWriterTable

 11

7.6. MBFitsManager
In the design phase we decided to implement the hierarchical version of the MBFITS
format, as described in the reference manual from version 1.6. With this
implementation choice, each table is stored in a separate file and we need to write an
additional table, named GROUPING, that lists the references to, and other
information on, the various files related to a single scan.
Some of the methods implemented in the MBFitsManager class handle the process of
creating, writing and closing these files. Other methods have been created to realize
an interface to the EngineThread class to handle the start and the conclusion of a scan,
the beginning and the end of each subscan and the recording of observational data and
of the parameters associated to them.
Another method of this class is invoked by the CCollectorThread class to record the
monitor data.

7.7. MBFitsWriter
The low-level operations for recording information in the MBFITS files and tables are
managed through the library CCFits. It permits to create FITS files, to add tables to
them, to manage columns and to assign the values to keywords and to binary data.
In the MBFitsWriter class we implemented an interface to the CCFits library in order
to simplify the operations of reading and writing the values. These methods have been
developed to be abstract with respect to the data type to be read and to be stored, so
that they can be handled in a homogeneous manner. For instance, a certain method
can lead to the storage of single or multiple values, according to the system setup,
without changing the parameters list.
With reference to this last aspect, the implementation of this class greatly simplifies
the management of the different configurations that are possible for a scan
observation, since it is not necessary to implement different blocks of code, in the
methods of classes MBFitsManager and EngineThread, to handle different setup
configurations.

7.8. MBFitsWriterTable
The abstraction realized by the MBFitsWriter class with respect to the CCFits library
has been developed focusing on the library methods that handle data reading and
storing operations, both on single and multiple values.
Each instance of the MBFitsWriterTable class represents a FITS table, created and
managed by the instance of the MBFitsManager class, so that the code realizes an
abstraction of tables as objects of the code. Most of the operations activated by the
EngineThread to store setup information or observation data require to operate on
almost all the headers or the binary sections of FITS tables. As a consequence,
creating an abstraction of these tables as instances in the code immediately translates
into a simpler way to handle these objects.

 12

8. Sequence of interactions in data acquisition and storage

Figures from 4 to 10 illustrate the sequence of the most important interactions that
occur between instances of the classes that are involved in the process of recording
observational data, and the related information, in MBFITS format.
We have previously described that the EngineThread class manages the activation of
the MBFitsManager class when configuration information or observational data are
available, delegating their management to this class for storing them in the MBFITS
files. These interactions also determine the creation and saving of FITS tables that
constitute the file structure of MBFITS, on the key points in time defined in the
reference manual MBFITS:

• Scan
A scan is the lowest level object normally used by an observer. It is a sequence of one
or more subscans that share a single goal: for instance pointing and focus scans, cross
scans or map scans involve a pattern of subscans. Whether OTF (On-The-Fly) maps
mosaicing observations are considered a single scan or a series of scans is rather a
matter of how the user would like to define it. In our implementation each map is
considered a scan.

• Subscan
A subscan is the minimal amount of data taking that can be commanded at the script
language level, the script language being a format and a set of telescope instructions
to be interpreted by the Telescope Control Software.
It is highly desirable for the subscan to be a simple enough element, so that the script
language may be used to define (at the staff-member/expert level) the content of
scans as a means to develop and debug new observing modes.

These terms define frames which reflect into the organization of tables in the
MBFITS format: SCAN and FEBE tables store information about the scan as defined
by the observer, DATAPAR and ARRAYDATA are created and store data for each
subscan.
In the previous version of ESCS the schedules could specify only parameters at the
subscan level: for each subscan all data were stored in a single FITS file and the
information to connect different subscans with a common goal was left to the
observer initiative.
With the MBFITS format this information is required to be stored in the SCAN and
FEBE tables. The list of all the tables composing a single scan is stored, for the
hierarchical implementation, in the GROUPING table.

 13

9. New format for the schedules

The new data/info arrangement required to implement an updated format for the
schedules and to manage some more information in the ScheduleExecutor. We
defined a new format for the schedule: after an introductory header, the first schedule
line is used to specify information common to the whole scan, while the following
lines are dedicated to the individual subscans.
In the development of this new format for the schedules, we preserved the possibility
for the user to decide, scan by scan, which format (FITS or MBFITS) should be used
as data output.

The information required by the MBFITS format to be stored in the SCAN table is
relevant only to MBFITS, or to be more precise, to the data reduction software that
will be applied to the MBFITS files. We decided to modify the schedule format by
adding an attachment file that is not parsed by the ScheduleExecutor and will be used
only by the writer component. This decision allowed us to implement a very flexible
solution, that will be adapted in the future if new formats are required for additional
writer components, while keeping the schedule format as simple as possible.

The result we obtained was twofold:

• the files composing the schedule are essentially identical to those used in
previous versions of ESCS for all the specified information, almost
exclusively the ones functional to the observations. As a consequence, the
implementation of the ScheduleExecutor and all the related code required only
minor updates

• values that do not modify the antenna setup or the pointing in the course of the
observation and are required by a new storage format can be specified in the
attached file

• the same need may arise in the course of the observation by components with
particular implementations. The attached file will be therefore useful not only
for the MBFITS format, but also for other formats, or to integrate new
components in ESCS/Nuraghe that might need additional information.

9.1. Attachment data

Here we list the keywords to be included in the attached file, when the MBFITS
format is chosen for data storage. They are divided into groups according to their
position which, in turn, depends on the keyword level (scan or scubscan).

Groups of keywords that should appear in the main section of the attached file:

• Description of the scan
The data reduction software should not calculate positions based on this
description; it must instead rely on the actually observed positions provided in
the DATAPAR table

• Description of the basis and the native reference systems and of the relative
coordinates

• Description of the projections

 14

Groups of keywords that could appear in the subsections of the attached file:
• Description of the native reference system for the observation of bodies in

motion: if the value of MOVEFRAM in group 1 is "true", these values have to
be set for each subscan and the corresponding values of the first group must
not to be considered.

Here follows the list of the keywords, grouped as indicated above.

1. Description of the scan:

• SCANTYPE
Scan astronomical type

• SCANMODE
Mapping mode

• SCANGEOM
Scan geometry

• SCANDIR
Scan direction

• SCANLINE
Number of lines in a scan

• SCANRPTS
Number of repetitions for each scan line

• SCANLEN
Line length

• SCANXVEL
Tracking rate along line

• SCANTIME
Time for one line

• SCANXSPC
Step along scanning line between samples

• SCANYSPC
Step between scan/raster lines

• SCANSKEW
Offset in scan direction between lines

• SCANPAR1
Spare scan parameter

• SCANPAR2
Spare scan parameter

• CROCYCLE
CAL / REF / ON loop string

• ZIGZAG
Is the scan performed in zigzag mode?

• MOVEFRAM
True if tracking a moving frame

• SWTCHMOD
Type of switched observation

 15

2. Description of the basis and the native reference systems and of the relative
coordinates:

• CTYPE
Basis system type : LONGITUDE / LATITUDE
Accepted values: RA/DEC, GLON/GLAT, AZ/EL

• CRVAL1
Native frame zero in basis system (longitude)

• CRVAL2
Native frame zero in basis system (latitude)

• CTYPEN
Native system type: LONGITUDE / LATITUDE
Accepted values: RA/DEC, GLON/GLAT, AZ/EL

• SCANROT
Rotation of the user frame meridian w.r.t. the basis frame meridian, measured
positive E of N

• WCSNAME
Human-readable description of the basis and user native coordinate systems.
For rotated (descriptive) user frames WCSNAME is ’descrip’ followed by the
basis frame description. Where the user frame is not rotated then use ’absolut’
followed by the basis frame description. For moving body observations
use ’Moving body coordinates’.

3. Description of the projections:

• BASISPROJECTION
Projection for basis frame: LONGITUDE / LATITUDE
Accepted values: SFL/SFL

• NATIVEPROJECTION
Projection for native frame: LONGITUDE / LATITUDE
Accepted values: SFL/SFL

4. Description of the native reference system for the observation of bodies in motion:

• CTYPEN
Native system type : LONGITUDE / LATITUDE

• MCRVAL1
(Moving frame) Native frame zero in basis system (longitude)

• MCRVAL2
(Moving frame) Native frame zero in basis system (longitude)

• MSCANROT
(Moving frame) Rotation of the user frame meridian w.r.t. the basis frame
meridian, measured positive E-N

 16

10. Data storage process – execution flow

The storage operations of data and information during each observation are started
and stopped through the interactions between the EngineThread instance and the
MBFitsManager object.

The first step in this process is the definition of the path for the directory that will
contain all the files of the scan, as shown in Figure 4.
The beginning and the end of a scan, respectively, determine the invocation of
methods “startScan” and “endScan”, the start and end of each subscan are handled
through the methods “startSubScan” and “endSubScan”.

The transmission of the observational data is managed by the method “processData”
of the class EngineThread which, in turn, invokes the methods
“integrationParameters” and “integration” on the instance of the class
MBFitsManager.

The monitor data are collected through methods of the instance of CCollectorThread
and managed by the method “processData” of the same class, which sends data to the
MBFitsManager instance through the “monitor” method.

Figure 4 - definition of the path for the directory that will contain all the files of the scan.

 17

Figure 5 - interactions between the EngineThread and the MBFitsManager instances

Figure 5 shows the interactions between the EngineThread and the MBFitsManager
instances and the sequence of methods that are executed in the starting phase of each
scan.

The first step in this sequence is setting the name for the file where the GROUPING
table is written. This file is then opened and the initialization of the header values and
of the structure of the binary table section takes place.
Analogous operations are executed on the instance of CMBFitsWriterTable that will
handle the SCAN table and the file to contain it. We also add some information about
this file to the GROUPING table, as described in the MBFITS reference manual for
the hierarchic implementation.
For each frontend-backend pair we create a new file, setting and initializing a
FEBEPAR table to be stored in each of these files. We add the parameters describing
this frontend-backend configuration to the binary table section of the SCAN table.
We use one instance of the MBFitsWriterTable class for each table we need to create
for the MBFITS format, so the code of the methods is specialized on the basis of the
particular table owned and managed by each instance. The methods defined in the
MBFitsManager have similar names for analogous duties to be accomplished on
different instances of the MBFitsWriterTable class.

 18

Figure 6 - A subscan start activates the execution of some methods from EngineThread to

MBFitsManager
The start of each subscan activates the execution of some methods from the
EngineThread instance to the MBFitsManager object, as shown in Figure 6.
These methods are required to create and initialize the tables in the MBFITS format to
store all the acquired data, and the information to describe a single subscan.

As a next step we create and initialize the file to contain the MONITOR table: this file
will be created in a new subdirectory where all the files relative to the same subscan
will be stored.
For each frontend-backend pair we create a file to save the DATAPAR table: we set
the filename, open the file, initialize the header with the required keywords and values
and we configure the structure of the binary table section. We also add the
information of this file to the main GROUPING table.
Inside the same loop, iterating over a nested loop for all the configured basebands, we
also create and initialize new files to store the ARRAYDATA table(s), one file for
each baseband.

The last step in the starting phase of each subscan is to measure and save the related
environmental information. We currently collect some meteo and tracking
information, through the CollectorThread instance, and we store them into the
MONITOR table created for the subscan.

 19

Figure 7 - high level methods invoked during the main loop.
The EngineThread instance invokes the processData method on itself.

Figure 7 shows the high level methods invoked during the main loop of the
observation.
The EngineThread instance invokes the “processData” method on itself.

If new data are available to be stored, the EngineThread instance invokes the
“integrationParameters” method of the MBFitsManager instance, in order to save the
information related to the antenna pointing into the DATAPAR table.
Then the “integration” method of the same object is invoked to store the observation
data into the ARRAYDATA table.

Figure 8 – collecting meteo and tracking data for the MONITOR table.

The CollectorThread is executed as an independent thread and the core operations of
its loop are activated only by the start of a subscan. They are ended by the closing
event of the same subscan.

 20

If the subscan is in execution, every time we enter the loop we collect new meteo and
tracking information and store them, through the MBFitsManager instance, into the
MONITOR table created for this subscan, as shown in Figure 8.

Figure 9 shows the methods invoked for the “stopSubScan” event: we get the meteo
and the tracking information and store them into the MONITOR table, then we
disconnect the CollectorThread from the MBFitsManager instance to stop the
recording of these data.

As a last step in the subscan storage procedure, we update the DATAPAR and the
SCAN table to save the correct completeness status of the operations and we close the
subscan-related files, looping over all the frontend-backend pairs and configured
basebands to close all files that were created as the subscan started.

When the scan is completed we need to close the main files created for it: for each
frontend-backend pair it is necessary to close the corresponding FEBEPAR table file,
then the SCAN and the GROUPING table files are closed.

Figure 9 – methods invoked for the “stopSubScan” event.

Figure 10 – closing the files.

 21

11. Implementation of the interfaces

We previously showed that the component-container model MBFitsWriter declares an
interface derived from Management::DataReceiver, and this has been realized through
the implementation of the class MBFitsWriterImpl.
In the ACS structure, the inheritance of a component from an interface involves the
declaration of an XML schema and its definition as a table stored in the CDB.
The derivation from the DataReceiver interface involves the inheritance of properties
listed and described below:

• fileName
Definition of the filename that is currently written

• projectName
name of the project currently running

• observer
name of the observer

• scanIdentifier
identifer of the currently running scan

• deviceID
identifer of the device currently used as primary

• scanAxis
it stores the information about the axis along which the subscan is taking
place; since one axis at a time is allowed, the antenna movement has the
precedence over the ServoMinor. When the telescope is not scanning or it is
simply tracking, in that case “MNG_NO_AXIS” is reported.

• dataX
istantaneous X data

• dataY
istantaneous Y data

• arrayDataX
all X data from the beginning of the data acquisition

• arrayDataY
all Y data from the beginning of the data acquisition

• status
general status of the subsystem

• recv_protocols
type of the protocol, address and port for receiving data

Here follow the time-related parameters for the execution of threads to acquire
observational data – and other information – from the components of the
ESCS/Nuraghe system:

• WorkingThreadTime
sleep time of the working thread (microseconds), this is the thread that saves
the data into the file

• WorkingThreadTimeSlice
time slice of the thread (microseconds): the thread must complete one iteration
within that time

 22

• CollectorThreadTime
sleep time of the collector thread (microseconds), this is the thread that
collects the complementary information to be stored in the file

• RepetitionCacheTime
cache time (microseconds) for logging repetition filter

• RepetitionExpireTime
expire time (microseconds) for logging repetition filter

• MeteoParameterDutyCycle
gap between two weather station parameters refreshes (microseconds)

• TrackingFlagDutyCycle
gap for the tracking flag refresh (microseconds)

Paths of the interfaces for the components of the ESCS/Nuraghe system used by the
component-container model MBFitsWriter:

• AntennaBossInterface
tinterface of the component that leads the Antenna subsystem

• ObservatoryInterface
tinterface of component that stores observatory information

• ReceiversBossInterface
interface of component that leads the receivers subsystem

• SchedulerInterface
interface of the component that leads the system and carries out the
observation

• MeteoInstance
instance name of the component that samples the weather station data

Some information stored in MBFITS files concern the configuration of the acquisition
system of the observational data, such as the time system adopted, or the parameters
that depend on the setup of the antenna chosen by the observer.
We created new schemas and added two new tables to the CDB to store these values.
Here is the list and the description of these parameters:

TimeData

• timeSys
time system

• tai2utc
TAI - UTC time correction

• et2utc
Ephemeris Time - UTC time correction

• gps2tai
GPS - TAI time correction

 23

AntennaParameters

• band
identifier of the band

• apertureEfficency
aperture efficiency

• beamEfficency
beam efficiency

• forwardEfficency
forward efficiency

• HPBW
Half-Power Beam Width
During the observations the value of HPBW is computed from other
components of the ESCS/Nuraghe system. These online values are stored in
the MBFITS files.

• antennaGain
antenna Gain

• calibrationTemperature_LCP
calibrationTemperature_RCP
calibration Temperatures for Left/Right Circular Polarization

• dsbImageRatio
double Side Band Image Ratio

• gainPolynomParameters_a
gainPolynomParameters_b
gainPolynomParameters_c
coefficients of the gain polynomial

12. Pointing model description parameters

The MBFITS format requires to record information on the antenna pointing, as it
might be needed during the data analysis phase.
The corrections to the pointing can be divided into different contributions:

• antenna
• subreflector and receiver-dependent static terms
• dynamic pointing
• focus corrections from observations of pointing sources during the

observations
• focus/elevation interplay
• refraction.

For the APEX antenna the pointing corrections are dealt with in two stages: the
telescope control system (TICS) handles the refraction correction, the dynamic
antenna pointing correction, and the receiver terms; and the antenna pointing
computer deals internally with the static pointing, the dynamic focus correction, and
the focus/elevation interplay. This reflects in the MBFITS format by storing the
pointing coefficients in two groups of keywords.

 24

The static pointing coefficients for the APEX antenna, for which the MBFITS format
has been created at first, follow the 7-coefficient model described by Mangum (2001),
which follows the Stumpff (1972) model plus an extra flexure term, which behaves in
the same way as receiver offsets at the Nasmyth focus. Following ALMA
developments, this has been extended to include higher order sine and cosine terms
and this is reflected in the SCAN header keywords from v.1.55.

PointingCoefficients

• ia
azimuth encoder zero offset

 -P1 in the 7-coefficient model described by Mangum (2001)
• ie

 collimation error of the electromagnetic axis
 P7 in the 7-coefficient model described by Mangum (2001)

• hasa
azimuth correction, function of sin(Az)

• haca
azimuth correction, function of cos(Az)

• hese
gravitational flexure parallel to optical axis plus horizontal receiver offset at Nasmyth
focus

• hece
gravitational flexure perpendicular to optical axis plus vertical receiver offset at
Nasmyth focus

 P8 in the 7-coefficient model described by Mangum (2001)
• hesa

 elevation correction, function of sin(Az)
• hasa2

 azimuth correction, function of sin(2Az)
• haca2

 azimuth correction, function of cos(2Az)
• hesa2

 elevation correction, function of sin(2Az)
• heca2

 elevation correction, function of cos(2Az)
• haca3

 azimuth correction, function of cos(3Az)
• heca3

 elevation correction, function of cos(3Az)
• hesa3

 elevation correction, function of sin(3Az)
• npae

collimation of the axes / non-perpendicularity between mount azimuth and elevation
axes

 -P3 in the 7-coefficient model described by Mangum (2001)
• ca

 collimation error of the electromagnetic axis
 -P2 in the 7-coefficient model described by Mangum (2001)

• an
 azimuth axis offset / misalignment north-south / zenith shift
 -P5 in the 7-coefficient model described by Mangum (2001)

 25

• aw
azimuth offset / misalignment east-west / zenith shift
-P4 in the 7-coefficient model described by Mangum (2001)

• hece2
elevation correction, function of cos(2El)

• hece6
elevation correction, function of cos(6El)

• hesa4
elevation correction, function of sin(4Az)

• hesa5
elevation correction, function of sin(5Az)

• hsca
horizontal correction, function of cos(Az)

• hsca2
horizontal correction, function of cos(2Az)

• hssa3
horizontal correction, function of sin(3Az)

• hsca5
horizontal correction, function of cos(5Az)

• nrx
horizontal displacement of Nasmyth receiver

• nry
vertical displacement of Nasmyth receiver

• hysa
pointing coefficient for Azimuth Hysteresis

• hyse
pointing coefficient for Elevation Hysteresis

• setLinX
focus X linear zero position

• setLinY
focus Y linear zero position

• setLinZ
focus Z linear zero position

• setRotX
focus X rotational zero position

• setRotY
focus Y rotational zero position

• setRotZ
focus Z rotational zero position

• moveFoc
harmonic oscillation of focus?

• focAmp
harmonic oscillation focus amplitude

• focFreq
harmonic oscillation focus frequency

• focPhase
harmonic oscillation focus phase

We list also the parameters used to store the values of the coefficients for the
corrections of the pointing that depend from the receiver.
Using values from the MBFITS files, each of the following parameter must be added
to the corresponding coefficient stored in the table SCAN; the correspondence is

 26

given by the name of the keyword to which, for the coefficients due to the receiver, a
"rx" suffix is added.

PointingCoefficientsReceiver

• iarx
• ierx
• hasarx
• hacarx
• heserx
• hecerx
• hesarx
• hasa2rx
• haca2rx
• hesa2rx
• heca2rx
• haca3rx
• heca3rx
• hesa3rx
• npaerx
• carx
• anrx
• awrx
• hece2rx
• hece6rx
• hesa4rx
• hesa5rx
• hscarx
• hsca2rx
• hssa3rx
• hsca5rx
• nrxrx
• nryrx

 27

13. Summary

1. From the origins to a standard format ... 2
2. Data structure and time frames ... 3
3. Software for data analysis ... 4
4. MBFITS implementation: hierarchical structure .. 5

4.1. GROUPING Table ... 5
4.2. SCAN Table ... 5
4.3. FEBEPAR Table .. 6
4.4. ARRAYDATA Table .. 6
4.5. DATAPAR Table .. 6
4.6. MONITOR Table ... 6

5. ESCS (Enhanced Single-dish Control System) and Nuraghe 7
6. Data sender and data receiver ... 7
7. MBFITS implementation of the component-container model 8

7.1. CConfiguration .. 9
7.2. CDataCollection ... 9
7.3. CSecureArea .. 9
7.4. EngineThread ... 9
7.5. CCollectorThread ... 10
7.6. MBFitsManager ... 11
7.7. MBFitsWriter ... 11
7.8. MBFitsWriterTable .. 11

8. Sequence of interactions in data acquisition and storage 12
9. New format for the schedules ... 13

9.1. Attachment data ... 13
10. Data storage process – execution flow ... 16
11. Implementation of the interfaces .. 21
12. Pointing model description parameters .. 23
13. Summary ... 27

