

Space Debris Digital Beamformer

based on CASPER Hardware

A. Mattana
1
, G. Naldi

1
, G. Pupillo

1

IRA 462/12

1) Istituto di Radio Astronomia, Bologna, INAF

Space Debris Digital Beamformer
based on CASPER Hardware

2

Space Debris Digital Beamformer
based on CASPER Hardware

Referee: Monari Jader

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

3

Contents

PREFACE ... 5

SYSTEM REQUIREMENTS .. 6

HARDWARE .. 8

CASPER GROUP .. 8

IBOB AND BEE2 BOARDS .. 8

CONNECTION SCHEME ... 15

FIRMWARE ... 18

IBOB ... 18

BEE2 ... 26

NETWORKING ... 32

CONTROL SOFTWARE ... 34

COMMUNICATE WITH HARDWARE .. 34

PRELIMINARY OPERATIONS ... 35

BOOTING UP THE SYSTEM ... 35

INITIALIZATION ... 39

SCHEDULING .. 43

STORAGE .. 44

RUN A SCHEDULE .. 45

REAL TIME MONITOR ... 46

VALIDATION ... 48

DEBUG TOOLS .. 48

SAMPLING ... 51

FAST FOURIER TRANSFORM CONSIDERATIONS .. 53

SIGNAL GENERATION REPORT ... 55

RESULTS ... 56

PYTHON SCRIPTS .. 62

BEECOOL... 62

Readme ... 62

start_server.py .. 62

bee_sdeb_server.py ... 63

gbe_fpga1_monitor.conf... 65

gbe_fpga1_storage.conf ... 65

gbe_fpga2_monitor.conf... 65

gbe_fpga2_storage.conf ... 65

gbe_fpga3_monitor.conf... 66

Contents

4

gbe_fpga3_storage.conf ... 66

gbe_fpga4_monitor.conf... 66

gbe_fpga4_storage.conf ... 66

CONTROL .. 66

Readme ... 66

dataconversion.py (author Marco Bartolini) ... 68

pack_sdeb_pars_conf.py (author Marco Bartolini) ... 70

pack_sdeb_pars_obs.py .. 71

config_wizard.py ... 72

sdeb_init.py ... 76

sched/3C123_fpga1.conf .. 81

sdeb_run.py ... 81

last_calib_ew.conf ... 84

systems.conf .. 84

fpga1.conf ... 85

STORAGE .. 86

README.txt ... 86

fpga1_recorder_server.py ... 86

record_fpga1.py .. 88

MONITOR ... 91

README.txt ... 91

realtimespectra.py .. 91

INDEX OF FIGURES .. 95

INDEX OF TABLES.. 97

ACRONYMS .. 98

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

5

Preface

 This document will describe deeply the Beamformer system starting from the

Hardware Architecture, trough the operational phases (scheduling, observing), to the data

process till to obtain the beam of the observation target which can be a well-known radio

source, useful to equalize system parameters, or as for this specific application, a space

debris.

 This Beam former system takes the input signals coming from single Northern-Cross

Radio Telescope antenna receivers, aligned in East-West, and “form” a unique beam

describing the power of the observed target. Depending of the type of the observation

the processed beam can show a total power of a radio source or even a doppler shift of a

debris transiting over the field of view of the antenna whilst illuminated by a transmitter.

 The beamformer system has been mainly developed for radar measurements of

space debris orbiting around Earth. In these observations different sections of the

Northern Cross array are used as the receiving part of a bistatic radar system operating in

UHF band in conjunction with a proper transmitter. Due to the particular features of the

received radio echoes, the beamformer has been optimized in order to fulfill some

specific requirements, such a narrow receiving band and a high time accuracy.

 We would like to thanks Marco Schiaffino and Marco Bartolini for their useful

contributes.

System Requirements

6

System Requirements

 Northern Cross antenna has been used as receiving part of a bistatic radar for Space
Debris detection. This radar configuration (Fig. 1) uses transmitting and receiving
antennas at different locations allowing the transmission of CW signals. The antenna
beams are kept in a fixed direction with respect to the Earth (beam-park technique) so
that, when an object passes through the common volume at the beams intersection, it
produces a radio echo.
In CW unmodulated trasmissions, the echoes are expected to be quasi-monochromatic
and, consequently, signal post-processing is mainly performed in the frequency domain.

Fig. 1: Bistatic radar configuration geometry.

 The most part of our potential radar targets are in low Earth orbit (LEO), i.e. below an
altitude of about 2000 km from the Earth surface. This is the most polluted orbital region
in which radars are very sensitive and outperform all other types of sensors (optical
telescopes, etc.).

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

7

 The Northern Cross space debris bistatic radar observations are carried out in beam-
park mode, without tracking the target. Due to the high angular speed of the objects in
LEO, the typical duration of a space debris echo is of the order of the second.

 In a bistatic configuration the frequency Doppler shift, , of the received signal is
given by:

(̇ ̇)

where

 = transmitted wavelength [m]

 ̇ = target radial velocity respect to the transmitter [m/s]

 ̇ = target radial velocity respect to the receiver [m/s]

 Considering a maximum speed for a debris in LEO of m/s (assuming a
circular orbit) and a signal wavelength of 0.735 m, the bistatic Doppler shift doesn’t
exceed 22 KHz in frequency.

 The beamformer receiving band of 100 KHz is optimized for space debris observations
because it permits to detect any possible radar echo coming from a LEO target and, at the
same time, prevents the storage of large amounts of data acquired in the time domain.

Hardware
CASPER group

8

Hardware

CASPER group

 The term CASPER means “Collaboration for Astronomy Signal Processing and
Electronics Research”. The CASPER was born at the Berkeley University of California, with
a collaborations of several institute and laboratories. The primary goal of CASPER is to
streamline and simplify the design flow of radio astronomy instrumentation by promoting
design reuse through the development of platform-independent, open-source hardware
and software.

 The CASPER group aim is to couple the real-time streaming performance of
application-specific hardware with the design simplicity of general-purpose software. By
providing parameterized, platform independent gateware libraries that run on
reconfigurable, modular hardware building blocks, they abstract away low-level
implementation details and allow astronomers to rapidly design and deploy new
instruments.

IBOB and BEE2 boards

 The Casper researcher group has been develop more than one powerful board based
on Xilinx FPGAs, the boards used for this specific application are the IBOB and the BEE2.
Every CASPER boards are sold without firmware but with a lot of primitives which allow to
develop your own application.

 The IBOB (Interconnect Break Out Board) is the very first product of the CASPER, it
has been developed on the 2005, that means, the libraries we are using today to
implement acquisition system over this hardware have been carefully checked and tested
from many engineers working in the astronomical world since seven years.

 IBOB board main features are:

o a Xilinx Virtex-II Pro FPGA programmable via a JTAG port (setting specific
jumpers, it can load the firmware at the switch on from an on-board EEPROM);

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

9

o 2x CX4 10Gbps serial connectors;
o 1x RJ45 Ethernet interface;
o 1x RS232 interface
o 2x ZDOK connector where plug lots of custom A/D board up to 1GSample
o 1x MDR 40 differential pair connector;
o 80x GPIO headers with selectable IO voltage;
o 2x SMA IO;
o 2x 512k x 36-bit SRAMs

 The Board can be schematically represented with the block diagram of Fig. 2.

Fig. 2: Block diagram of the Ibob board general architecture

 Every CASPER boards have the same kind of connector for the A/D board in order to
re-use AD boards even with the next CASPER hardware generation.

Hardware
IBOB and BEE2 boards

10

Fig. 3: The IBOB board, you can see on the top the 2 ZDOKs for A/D boards, two CX4 connectors below, JTAG pins

on the left, while the Xilinx Virtex 2 Pro is behind the cooler

 IBOB can mount 2 A/D board, we are using the custom “iADC”, which takes in input:

o 8 bit Dual 1Gsps;
o A ref Clock: 10MHz-1GHz, 50Ω, 0dBm;
o A pulse per second reference (PPS);

Fig. 4: CASPER iADC

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

11

 Therefore the IBOB can acquire signals coming from 4 antenna receivers (Northern
Cross Radio telescope has antennas only with one polarization). Data collected and
processed can be sent via the 10 Gbit Ethernet link to a workstation (via UDP protocol) or
even to another CASPER board (via XAUI that is a easier point to point protocol) for
additional processing.

 The BEE2 is a module, which is a single printed circuit board containing five FPGAs
arranged within a very high-speed inter-chip and inter-board communication structure.
Additional peripherals are present to enhance usability and permit a fully functional free-
standing computing system. Each FPGA has direct access to four DDR2 memory modules
for program and intermediate result storage.

Fig. 5: A picture of the BEE2 board whose principal components are pointed out.

Hardware
IBOB and BEE2 boards

12

o 5 Xilinx Virtex-II Pro 70 FPGAs, Speed Grade 6
o Up to 40 GB DDR2 SDRAM
o SystemACE controller and Type II CompactFlashTM for configuration and data

storage
o USB port
o DVI port
o SelectMAP configuration from control FPGA
o 10/100 Ethernet PHY
o RS-232 serial port (control FPGA)
o Status LEDs
o Serial ATA ports
o 18 AUI links (8 or 10 Gbps)
o Voltage and temperature monitoring
o Real Time Clock
o On-board power supplies
o Panel display
o Internal or external system clock and user programmable clock

 The basic compute elements on the module are five Xilinx Virtex 2 Pro 70K FPGAs.
The center FPGA, termed the control FPGA, has primary responsibility for system
management. Each of the remaining four user FPGAs are tasked with computional
workloads and can communicate with the control FPGA at a rate of 2.5GB/s. The user
FPGAs can also inter-communicate at a speed of 5GB/s via a ring configuration. These
Intra-module links are implemented using parallel buses utilizing general purpose I/O
signals of the Xilinx FPGA’s high-speed serial links.

 The selected product family has an additional 20 high speed serial RocketIO blocks
implemented directly on chip which can be used of up to 3.125Gb/s, and in this instance,
specificed to meet the IB4X description common to both by the Infiniband and the 10Gb-
Ethernet-CX4 standards. It groups four 2.5Gb/s (Infiniband) or 3.125Gb/s (10Gb-CX4)
differential pairs in a single unit to reach an effective maximum bit-rate of either 8Gb/s or
10Gb/s per port.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

13

Fig. 6: Block diagram of the BEE2 board general architecture

 Each user FPGA has four IB4X ports, whereas the control FPGA has only two. Each
individual port requires four RocketIOs, which leaves four transceivers unused on the user
FPGAs, and twelve on the control FPGA. Up to four DDR2 DIMMs can be attached to each
FPGA. Individual 72-bit wide DRAM modules can be accessed at speeds of up to
400Mb/s/wire, corresponding to an aggregate throughput of 3.4GB/s per DIMM.

 A brief schematic representation of the data flow can be the follow:

Fig. 7: Data Flow scheme

 Signals coming from 4 receivers (that have to be calibrated in phase and equalized in
amplitude before) will be digitalized and acquired from the IBOB that apply a first stage of
filtering and processing. Then a second stage of filtering will applied on the BEE2 which
makes the beam by summing the time domain data and sends the result to workstations
for the analysis.

Hardware
IBOB and BEE2 boards

14

 The time accuracy is demanded to the IBOB firmware which synthetized an internal
clock synchronized “indirectly” via a NTP server placed on the Medicina Dish Control
Room where time accuracy is guaranteed by a Hydrogen Maser Atomic Clock. A 10 MHz
Sinewave locked to the Maser is distributed to every backends. The iADC sampler is
locked to this 10Mhz, and the control software during the system initialization perform a
time update with the IBOB internal clock (see chapter “Firmware/IBOB”).

 Communication between the BEE2 and workstations for control, monitor and storage
must be supported by a 10Gbit Ethernet Switch with CX4 ports. We have used the Fujitsu
XG700 12 Ports Layer 2 Switch which provides a throughput 240Gbit/s.

Fig. 8: Fujitsu XG700 12CX4 Ports 10Gb Switch

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

15

Connection Scheme

 The Beamformer Digital Backend has been realized in the Medicina “Receiver Room”.
It is placed in the South-East room corner where three 19’’ inch racks hosts most of the
devices used for this project. The overall project scheme is as follow:

Fig. 9: Overall scheme

 Synchronization and is guaranteed by the distribution of a 10MHz synewave derived
by the hydrogen maser atomic clock that stabilizes the local oscillator used by a mixer that
converts the RF input signals to 30MHz Ifs. The Beamformer sends the generated time
domain beam to workstations trough the 10GbE switch.

Fig. 10: Basic connection scheme

Hardware
Connection Scheme

16

 Each IBOB is able to manage 4 IF, that for the Medicina’s Northern Cross
Radiotelescope means 4 antenna receivers (Northern Crosso does not have the dual
polarization). After the first stage of filters the data reachs the BEE2 via the 10GbE link
(CX4 port 0) and the synthetized beam will leave the beamformer on the BEE2 CX4 port 3
with UPD packet destinated to the storage machine. A copy of the same data will reach
the “control and monitor” machine (always trough the switch) using the CX4 port 2.

Fig. 11: 4 Parallel Beamformer System Connection Scheme

(control and storage must be connected as in the previous scheme)

 One beamformer uses just one BEE2 FPGA, it is possible to run till four beamformer
at the same time using 4 IBOB and just one BEE2 having redundancy. The number of the
connections increase, but it is not mandatory to have the real time monitor, so you can
disclaim to connect the BEE2 FPGA CX4 port 2 where you believe is not necessary.

 We found very useful in our tests to make observations using different configuration
of the input signals at the same time, because if an antenna receivers has trouble, due for
example to weather conditions during observation, the redundant system has most likely
given however good results.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

17

Fig. 12: Picture of the Local Oscillator set to 378MHz in input to
the MIXER to generate a IF of 30MHz

Fig. 13: Picture of the main Beamformer Digital Backend modules

 The above picture shows the Beamformer, you can recognize from the top:
a. The Fujitsu XG700 12CX4 Ports 10Gb Switch.
b. The BEE2 front side with the CX4 of the FPGA 1 and 4.
c. The Clock distributor, front side is a -19db input clock, on the rear there are 32

splitted output.
d. The PPS distributor (in/out on the rear).
e. 8 IBOB boards, input signals are in the rear side while in the front there are the

CX4 port.

Firmware
IBOB

18

Firmware

IBOB

 IBOB firmware has been written by using the Xilinx standard library combined with
CASPER IBOB customized libraries (highlighted in yellow) which help to address board
resources on your synthetized project. The below picture is the Matlab Simulink model file
that the system generator will use to generate the HDL code. Going into details the
firmware can be explained in the next schemes.

Fig. 14: Matlab Simulink Screenshot of the IBOB project

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

19

Fig. 15: IBOB firmware architecture

 The four IF real analog signals are digitized by the ADC cards with 8 bits precision and
a sampling rate of 120 MSample/sec. Then they are converted to a base-banded complex
signals centered at zero frequency by a DDC block (Fig. 16).

Fig. 16: DDC schematic

 The DDS generates a complex sinusoid (() ()) at the
intermediate frequency. Multiplication of the intermediate frequency with the input
signal creates images centered at the sum and difference frequency (which follows from
the frequency shifting properties of the Fourier transform). Properly designed lowpass
filters (in relation to the IF bandwidth), placed after this multiplication, pass the difference
(i.e. baseband) frequency while rejecting the sum frequency image, resulting in a complex
baseband representation mathematically equivalent to the original signal. Thanks to this
property, the complex baseband signal can be appropriately down-sampled without losing
any information.

http://en.wikipedia.org/wiki/Baseband
http://en.wikipedia.org/wiki/Negative_frequency#Complex_sinusoids

Firmware
IBOB

20

 In the case of the project the IF frequency is 30 MHz, the IF analog bandwidth is
variable and it can be 2.7 MHz, 5 MHz or 16 MHz according to the receiver system
connected to the ADC. During Space Debris observational campaigns the most used
bandwidth is the first: 2.7 MHz.

 The lowpass filter of the DDC has been designed using the Filter Design and Analysis
Tool of MATLAB. The main characteristic parameters of the FIR filter are shown in the
picture below.

Fig. 17: design parameters of the FIR filter inside the DDC block.

 The normalized cutoff frequency (wc) of the FIR filter is 0.1 of the real processed
bandwidth which is 60 MHz (since the ADC sampling rate is 120 MSample/sec). So the
filter cuts at 6 MHz.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

21

 The DDC block synthesized in the FPGA is optimized (in terms of resource usage) to
have a down sample factor of 4. Nevertheless with this filter it would be allowed a down
sample factor even higher (up to 10); however oversampling the signals prevents from
any undesired effects of aliasing.

 In general when mathematical operations (e.g. addition or multiplication) are applied
to signals their binary representation grows in terms of number of bits. Obviously the
greater the number of bits, the higher the percentage of hardware resources occupation
in FPGA. This is the case of the DDC in which there are several multiplications and one
addition. For this reason a re-quantization of data is accomplished just after the
decimation stage: in particular we pass from 39 bits to 8 bits binary representation of
signals (8 bits for real part and 8 bits for imaginary part), of course allowing a certain but
tolerable loss of precision.

 After being down converted by the DDC, the signals are multiplied by 16 bits complex
coefficients with unitary amplitudes in order to equalize the phases of all the signal
chains. These coefficients are calculated using an astronomical calibration procedure that
will be the subject of a future technical report.

Fig. 18: Design parameters of the FIR filter synthesized in the IBOB.

Firmware
IBOB

22

 Given the requirement to have at the output of the system raw data with about 100
KHz of complex bandwidth, another lowpass FIR filter is applied to data stream. This filter
has been splitted in 2 stages: one synthesized in the IBOB and the other in the BEE2
board. Unfortunately it is not possible to realize a unique FIR filter stage because of the
limited number of available resources in the IBOB.

 A good trade-off between size (n. of taps) and performance of the filter has been
found with the design parameters shown in Fig. 18.

 With 30 MSample/sec of sampling rate and 0.07 of filter wc, it follows that the filter
cuts at (). The data can be decimated setting a down sample
factor of 13 still remaining in the Nyquist sampling zone. In fact 13 is a proper integer
divisor of the sampling rate to have at least twice the cutoff frequency of the filter.

 The problem of data dimension recurs again because at this point signals are
represented by 32 bits words (32 bits for real part and 32 bits for imaginary part). For the
same reason mentioned before both real part and imaginary part of signals are re-
quantized with 8 bits precision.

 Then the resulting 16 bits complex signals of the 4 parallel chains are packetized
together at the same time into 64 bits words and sent over XAUI interface. The 64 bits
word is structured as schematically represented in the following table.

Position of bits from the most to the least significant

64 1

Re #1 Im #1 Re #2 Im #2 Re #3 Im #3 Re #4 Im #4

Tab. 1: Structure of the 64 bits word transmitted over XAUI.

 Data transfer using XAUI consists of a point-to-point regular stream of 64 bits words without
overhead on CX4 connectors. So there is a direct link between Ibob and BEE2 CX4 ports.

 Time accuracy is the main constraint in this kind of projects, an internal clock has
been synthetized into the IBOB in order to send data to the BEE2 at a specific time
window. The internal clock is locked to the Medicina station Maser Hydrogen Atomic
Clock by using the PPS (Pulse Per Second) and the 10MHz reference input.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

23

 During an initialization phase the workstation that is synchronize via NTP to the
Maser Clock perform a “time update” operation that consists on:

1. Wait for a “new” second (), that means HH:MM:SS.0000000
2. Send the UT Timestamp to the IBOB which will certainly arrives in less than one

second
3. Wait for the next new second () (in the meantime a PPS has incremented the

IBOB clock)
4. Ask for the IBOB local time
5. If the Received Timestamp is equal to the workstation local time, Success.

Fig. 19: Time diagram of the time update procedure

 We assume that the time on the workstation is very accurate, anyway latency time to
send timestamp to the IBOB (which means from PC to BEE2 over a private 10/100 Mbit
Ethernet network and from BEE2 to IBOB over XAUI point to point 10Gbit link) will be very
shortly and always less than 1 second. However just after a second there is a cross check
asking again the time of the IBOB and it is expected to be equal. In worst case, if the
previous latency time was greater than 1sec the new pps has not increased it and there is
a time mismatch message reported.

 Now the IBOB is up to date, it knows what time is it and what day is today. Even if not
needed a counter increasing with the IBOB clock (30 MHz) provides fraction of seconds.
When performing a measurement just upload to dedicated IBOB registers timestamps of
the start time and end time, and, if the system has been armed data will be generated.

Firmware
IBOB

24

Fig. 20: IBOB Timing registers

 An internal clock is necessary but is not enough for time accuracy. IBOB must
guarantee that the first sample leaving the IBOB is really the first sample acquired from
the A/D and then processed into the DDC and the FIR block set. A sync signal activated at
the start time has been propagate on the entire chain taking into account each block
latency and it indicates to the data packetizer when start.

Fig. 21: Propagating the sync signal with intermediate block latencies

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

25

 There is also a constraint for the down sampler, this decimator must be initialized to
the decimation value in order to enable the first sample as shown on the next picture:
time between the start and the first sync is the latency due to the DDC - Phase Rotator -
FIR block set, the very first sample will pass and the next sync will be down sampled.

Fig. 22: Simulation of the IBOB decimator performed using Simulink.

Firmware
BEE2

26

BEE2

 The BEE2 FPGA uses an internal oscillator as a 205MHz clock, the firmware can be splitted
in 2 main parts, one dedicated to the data processing and the other one to route commands
between the workstation and the IBOB.

Fig. 23: BEE2 MATLAB Model file

 The following scheme represents the architecture of the firmware.

Fig. 24: BEE2 firmware architecture

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

27

 Data received from XAUI interface are splitted in 4 parallel lines adopting the same
criterion used in the transmission side. So at the output of the unpacketizer block we have
complex signals with 16 bits precision to which we apply lowpass FIR filters. The target
complex bandwidth of about 100 KHz is achieved thanks to a FIR filter with a Hamming
window, 110 taps and a normalized cutoff frequency of 0.04 as shown in the next figure.

Fig. 25: Design parameters of the FIR filter synthesized in the bee2.

 Since the sample rate is about 2.307692 MSample/sec, it follows that the filter cuts at
46.153846 KHz (). In this way we obtain a total complex bandwidth
of 92.3076923 MHz and 23 results to be a suitable sample factor that can be used in order
to respect the Nyquist-Shannon sampling theorem.

 .

Firmware
BEE2

28

 Finally the 4 parallel data stream, that correspond to the signals coming from the 4
antennas of the array, are summed up together in phase forming the antenna array beam.
Again, after FIR filtering and summing operations, the resulting complex signal is now
represented by a greater number of bits, in particular 38 (19 for real part + 19 for
imaginary part). So, before making packets and sending them through 10 Gbit Ethernet
link, data are re-quantized in order to have the signal with 32 bit precision (16 for real part
+ 16 for imaginary part).

 The packetizer block produces time domain complex data in UDP packets of 1280
bytes over the 10 Gbit link. The format of the packet is very simple as follow:

Field Offset (byte) Length (byte)

Counter 0 8

Data 8 1272
Tab. 2: UDP packet format

Counter: The Counter field is simply a unsigned 64 bit integer counter of the packet, it
starts from zero and it is useful for the storage script to understand if there are lost
packets. Unfortunately, using UDP protocol in case of data loss the packet lost will be not
transmitted again. This field will be not stored in the output file.

Data: The Data field contains complex pairs of 32bit (Real part highest 16 bit and
Imaginary part the lowest 16 bit) and their representation is a signed fixed point 16.11 (or
16.12, it depends on the configuration chosen during the initialization). The MSB of 16’s
represent the sign. When negative the number has to be handled with 2’s complement.

s i i i i d d d d d d d d d d d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 The weight of each bit is as follow (generic form):

∑

 where the bit value can assume only values 0 or 1. Using a numbering system
centered to the binary point position (Fix 16.11) as follow:

s i i i i d d d d d d d d d d d

± 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

29

 Therefore, for the specific case Fix 16.11 is:

∑

 If the bit value number 15 is 1 the 2’s complement is obtained by inverting the value
of every bits and then adding 1. The same result can be easily obtained by subtracting the
minimum number representable (in case of a signed fixed point 16.11 is -8) to the
absolute value of the number (as it is a unsigned fixed point 16.11).

 The possibility to convert this data in real time from fixed point to real value is under
investigation. There is a package called fixreal developed by Marco Bartolini that converts
fixed point data to floating point and vice versa but we should study before the feasibility
because it takes lot of CPU/DISK time making this operation in real time while acquiring
and storing data to the disk and we do not want to risk to lose data.

 The order of the samples in the data field is simply as follow:

Data Field Offset (byte) Length (byte)

T0 Im 0 2

T0 Re 2 2

T1 Im 4 2

T1 Re 6 2

… … …

T317 Im 1268 2

T317 Re 1270 2

Tab. 3: Data field in UDP packets

 Where the T index means time relative just to this packet. There is no time marker on
packet header, it is important to refer to the output file name to associate each sampling
time to a sample.

 A hardware communication protocol has been developed on the BEE2 and IBOB
firmwares to allow to exchange data, set-points, commands, acknowledges and messages.
A data field called oob (“out of band”) will contain different values depending on the
meaning of the transmitted message. The OOB field is an extra 8 bit line (physically really
extra 8 wires) available over XAUI chip to chip protocol. Those 8 extra bit do not use the
64 bit bandwidth of the data field.

Firmware
BEE2

30

OOB BEE2 -> IBOB IBOB -> BEE2

0 MRST - Send Master RESET DATA - Science Data

1 WR - Write Register WR ACK - Write Acknowledge

2 ARM - Arm IBOB ARM ACK - Arm Acknowledge

3 TUP - Send Time Update TUP ACK - TUp Acknowledge

4 TR - Ask for IBOB local time TRA - Send Time Read

5 START - Set START Time STACK - Start Time set

6 STOP - Set STOP Time STOCK - Stop Time set

7 SW - Ask for SW version SWVER - IBOB Software Version

8 Not Used STARTED - Start Obs Signal

9 Not Used FINISHED - End of Obs Signal

Tab. 4: OOB list for IBOB-BEE2 internal communication protocol.

 When a command is sent to the IBOB via the BEE2 you can find the acknowledge few
clock cycles later on the BEE2 registers, this is very useful to understand if the command
sent to the IBOB has been receveid and applied.

Eg 1: Arming the System.

1. Workstation sends the command to ARM the IBOB at t0
2. BEE2 sends to IBOB: OOB=2, DATA=1 at t1
3. IBOB receives OOB=2, DATA=1, updates the ARM register value to 1 and sends an

acknowledge to the BEE2 at t2 sending OOB=2, DATA=1
4. BEE2 receives the ack and updates its own registers “last_rx_oob” and

“last_rx_data”.
5. Workstation can wait polling those registers to know if the command has been

received correctly from the IBOB, and at t3 can start to send the next commands.

 The workstation does not have to wait for a specific time between commands but can
wait polling the BEE2 registers to know when the IBOB is ready to accept the next
command. This protocol is not only used for communication between the wokstation and
the system but also to exchange information between IBOB and BEE2 implementing a
unique state machine as you can see on the next two examples.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

31

Eg 2: Starting an observation

Starting condition: Start time and Stop Time is set, System is Armed (Arm led on IBOB
switched on).

1. At t0 the local timestamp is equal to the start time, a STARTED signal is sent to the
BEE2 from the IBOB using OOB=8, DATA=0 (in case of a signal the data field does
not make sense)

2. BEE2 send a “soft reset” to the system which prepares the packetizer (reset a
counter) and the 10 Gbit buffer (empting the buffer) to start.

You will see the running led starting to blink.

Eg 3: Ending an observation

Starting condition: Start time and Stop Time is set, System is Armed (Arm led on IBOB
switched on).

1. At t0 the local timestamp is equal to the stop time, a FINISHED signal is sent to the
BEE2 from the IBOB using OOB=9, DATA=0 (in case of a signal the data field does
not make sense)

2. BEE2 answers to the IBOB disarming the system sending a OOB=2, DATA=0.

In this case you will see the running led stopping blinking and the arm led switching off.

If at the end of an observation you will see the running led switched of and the arm led
switched on there is a failure condition due to possible causes such:

o BEE2 has unexpectedly stopped to work, the storage should reports an error on
the amount of data dumped that differ than expected.

o The XAUI physical link connecting the IBOB and BEE2 has been disconnected.

Networking

32

Networking

 Using the UDP protocol each BEE2 FPGA Ethernet device must have a proper network
configuration in order to avoid conflicts between devices of the same network.

 We have identified a possible scheme on assigning IPs and MACs that unless than a
common part each address differs by only two ID digits as follow:

MAC 00:12:6D:AE:0B:XY

IP 192.168.11.XY

GATEWAY 192.168.11.10

PORT 6X00Y

Tab. 5: 10Gb Eth interface configurations

Where

X = FPGA ID, can assume value from 1 to 4
Y = SERVICE ID, can assume value from 1 to 5

 The PORT scheme is valid also for the Ethernet communication over the interface
10/100Mbit between the Control PC and the FPGA hardware registers. Here shown in the
next table the Service ID list:

INITIALIZATION 6X001

CALIBRATION(*) 6X002

MONITOR 6X003

STORAGE 6X004

RECORDER(**) 6X005

Tab. 6: Service ID List

(*) For the Calibration service see the “Space Debris Calibration” internal report.
(**) Used only between the Control and Storage machines.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

33

 While the INITIALIZATION and CALIBRATION services use the private 100Mb network
(192.168.10.X) the MONITOR and STORAGE packets travel on the 10GbE Network and the
RECORDER commands over the public network.

Fig. 26: IPs an MACs table

 The above picture lists the interfaces configuration for the 3 network:

1) 192.168.11.X the 10GbE Network

2) 192.168.10.X 10/100Mbit Private Network

3) 192.167.189.X 10/100Mbit Public Network

Control Software
Communicate with hardware

34

Control Software

Communicate with hardware

 The workstation can communicate directly only with the BEE2 board which will be
also a bridge interface between the IBOB and us. It is possible to interact with hardware
registers of the project loaded on FPGA thanks to the BORPH.

 BORPH is an extended Linux kernel that treats FPGA resources as native
computational resources on reconfigurable computers such as BEE2. As such, it is more
than just a way to configure an FPGA. It also provides integral operating system supports
for FPGA designs, such as the ability for an FPGA design to read/write to the standard
Linux file system. A user process in BORPH, can therefore either be a software program
running on a processor, or a hardware design running on a FPGA. A hardware design that
is running on a FPGA is called a hardware process.

 BORPH uses regions of FPGA fabric as computation units to spawn hardware
processes. Each reconfigurable region is defined as a hardware region (hwr). Logically, it is
the smallest unit of a RC that is managed by BORPH. Physically, it can be implemented as
an entire FPGA in a multi-FPGA system, or a partially reconfigurable region within a FPGA.
On a BEE2 module, there is only one hwr type defined, the b2fpga, which corresponds to
one user FPGA.

 The hardware process is seen as a software process running on Linux and it is located
on the directory “/proc” identified by the PID (Process Identifier). Subdirectories on that
folder contain lot of resources information, the most important are in “hw/ioreg” that
contains files for the input/output registers defined on the Matlab model file. Reading a
file content means read part of hardware region of that fpga. Depending of the
configuration assigned to a registers (“from/to processor”) at development level you are
allowed to read or even to write values.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

35

Preliminary operations

 IBOB bit file can be loaded via JTAG protocol (which require a hardware serial link)
into the FPGA. This is a volatile operation because after a power off the configuration will
be lost. IBOB board mounts an EEPROM that can be written statically and can contains
firmwares, and setting specific pin jumpers, the firmware will be automatically loaded on
FPGA at the power on.

 Xilinx Impact is a software which provides JTAG support, you can just debug a jtag
chain or even read/write bit files from/to a target chip of the chain. Switching the
software in advanced mode you are allowed to generate a eeprom file (“mcs”) starting
from a bit file to a specific type of chip. IBOB EEPROM has been written with the mcs file
of the beamformer while, thanks to the BORPH, the BEE2 does not require this operation.

 BEE2 file system can be accessed using secure shell protocols. The architecture file
synthetized (BOF file) for a BEE2 User FPGA must be copied on the BEE2 file system (in any
directory) using a sftp client. BOF file must have executable permission (‘x’) to all.

 The flow chart on the following page summarize step by step the few operations
needed to perform an observation of a beam.

Booting up the system

 Power on the IBOB board that will automatically load the firmware from the
EEPROM, you will recognize a led (bottom left) blinking with the PPS.

 Open a ssh client and connect to the BEE2 (beecool host aliases) from the
workstation (called bee2, please do not confuse bee2 host with the BEE2 board):

oper@bee2:~$ ssh obs@beecool

Password: ####### (confidential)

Linux (BORPH) beecool 2.4.30-pre1 #1 Thu Nov 9 12:06:49 PST 2006 ppc

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Thu Apr 30 19:43:58 1970 from 192.168.10.4

obs@beecool:~$

Control Software
Booting up the system

36

Fig. 27: State Machine Flow Chart

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

37

 BEE2 BOF files for this project has been located on “sdeb/bof” directory, go there and
run the BOF file as executable, if success you will recognize a new command promt.

obs@beecool:~$ cd sdeb

obs@beecool:~/sdeb$ cd bof

obs@beecool:~/sdeb/bof$./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof

* TinySH lightweight shell *

Design name : b_beamf_sdeb

Compiled on : 09-Nov-2012 17:06:29

DON'T PANIC ;-)

Type 'help' for help

Type '?' for a list of available commands

BEE2 %

Possible Failures: If a bof file is already running you get this error:

obs@beecool:~/sdeb/bof$./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof

-bash: ./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof: Device or resource busy

obs@beecool:~/sdeb/bof$

If the already running bof file is not related to this project just kill him and run the bof again.

obs@beecool:~/sdeb/bof$ ps -ef | grep ./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof

obs 26558 26553 0 19:52 pts/8 00:00:00 ./b_beamf_sdeb…………………9_1706.bof

obs 26574 26566 0 19:58 pts/9 00:00:00 grep ./b_beamf_sde………9_1706.bof

obs@beecool:~/sdeb/bof$ kill 26558

 Using that new command prompt you can interact with the hardware registers. These
operations have been simplified writing a python script that instantiate a listening server
that receive read/write commands over TCP and it has direct access to the registers files
on “/proc/PID/hw/ioreg” directory. Since the beecool shell is busy with the bof you have
to open a new one making a new ssh connection as before.

obs@beecool:~/sdeb$./start_server.py

Beamformer Server Launch Wizard

Please follow the instruction...

[1] 26576 ./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof

Select the PID index: 1

Control Software
Booting up the system

38

 Answer this question: if you see only one bof file type 1, if you see many bof file
running detect the bof you just run and type its index (the number on the left within the
brackets). Usually, should be the last of the list, but, if another user is running another bof
at the same time is not guaranteed. Several bof file name differ only of one digit, the
number of the fpga used, therefore pay attention on the targeted fpga.

[1] FPGA1 (usually IBOB2-BEE1)

[2] FPGA2 (usually IBOB3-BEE2)

[3] FPGA3 (usually IBOB4-BEE3)

[4] FPGA4 (usually IBOB7-BEE4)

Select the branch: 2

 Answer this question: if the antenna signals are connected on the IBOB n. 7 and there
is a 10Gb link between that IBOB and BEE2 FPGA4 (front-right) you have to answer 2.
Please verify always the hardware connections before to start.

Starting server for

 PID: 26576

 BOF: ./b_beamf_sdeb_fpga4_2012_Nov_09_1706.bof

server listening on port: 64001

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

39

Initialization

 The initialization phase customizes the system for a specific observation. There are
common parameters always valid such Ethernet configurations and values to reach the
desired bandwidth starting from a higher sampling frequency, and, parameters changing
day by day such antenna phase corrections in case we want to have a unique beam of
multiple antenna.

 An initialization python script instantiates a TCP client which will send these
configuration parameters that have been previously written in a text file to the listening
server running on the BEE2. This text file can be manually modified. A python script has
been developed to automatically generate the configuration file to avoid (or at least
reduce) typos, it is an interactive scripts that require to answer to some questions.

Last login: Thu Nov 22 11:41:42 2012 from 192.167.189.65

oper@bee2:~$ cd /media/data/sdeb/

oper@bee2:/media/data/sdeb$ python config_wizard_test.py

Beamformer Configuration file Wizard

Please follow the instruction...

+-----------+-----------+

| 2 | 3 |

+-----------+-----------+ BEE2 FPGAs

| 1 | 4 |

+-----------+-----------+

[1] BEE FPGA-1 (front - left)

[2] BEE FPGA-2 (rear - left)

[3] BEE FPGA-3 (rear - right)

[4] BEE FPGA-4 (front - right)

Which BEE2 FPGA are you going to use [1/2/3/4]? 4

[1] Fix 16.11

[2] Fix 16.12

Which data cast are you going to use [1/2]? 1

[1] LOFAR antennas

[2] NS receivers

[3] EW channels

Which antennas are connected to the system [1/2/3]? 3

Control Software
Initialization

40

Lastest phase calibrations have been done

on 14/11/2012 at 00:00:00 using radiosource 3C123

[1] 4E = +154.70863

[2] 5E = -1.2245701

[3] 2E = +00.000000

[4] 3E = +55.895791

"none" means channel off

Edit a channel by typing the index in the brackets

 or type zero [0] to confirm the configuration:

 The answers provided in this example will generate a file for a beamformer running
on the FPGA-4 of the BEE2 that talk with an IBOB having connected to its A/D input lines
the signals coming from the East-West arm of the Northern Cross Radio Telescope,
channels 2E, 3E, 4E and 5E.

 The script loads automatically the latest calibration of the East – West channels. If the
observation we are going to do does not need to use 4 E/W channels it is possible to
disable a channels by editing the phase writing a “none”. When the phase corrections are
set the script ask to show the file generated and ask if save it.

The configuration file is ready to be saved.

Do you want to check before to save [y/n]? y

Configuration file automatically generated by using

the Wizard on 22/11/2012 10:45:57 UT

NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS!

design global parameters

[global]

dec_factor = 13

bee_dec_factor = 23

integration for on board data accumulation

integration = 100334

Common network parameters

monitor_ip = 3232238346

storage_ip = 3232238347

pck_length = 160

gbe1_name = monitor

gbe2_name = storage

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

41

Parameters for the FPGA4 system

monitor_port = 64003

storage_port = 64004

gbe1_filename = gbe_fpga4_monitor.conf

gbe2_filename = gbe_fpga4_storage.conf

Data cast 16.11

data_format = 1

[main_fpga]

server = beecool:64001

#Phase shift in degrees for each single antenna

#none: mute antenna

d0 = +154.70863 # 4E

d1 = -1.2245701 # 5E

d2 = +00.000000 # 2E

d3 = +55.895791 # 3E

d4 = none #

d5 = none #

d6 = none #

d7 = none #

d8 = none #

d9 = none #

d10 = none #

d11 = none #

d12 = none #

d13 = none #

d14 = none #

d15 = none #

Do you want to save as fpga4.conf [y/n]? y

oper@bee2:/media/data/sdeb$

 The configuration file is ready to handle up to 16 input signals coming from more
than one IBOB. Finally it is possible to send this information to the BEE2 by running the
python script “sdeb_int.py” (there is a –L in lower case in the middle):

oper@bee2:/media/data/sdeb$./sdeb_init.py -l fpga4.conf

2012-11-22 15:08:36,556 - **

2012-11-22 15:08:36,556 - ******* INITIALIZATION PROCESS *********

2012-11-22 15:08:36,556 - **

2012-11-22 15:08:36,557 - parsing configuration file fpga4.conf

2012-11-22 15:08:36,557 - Initializing the Space Debris system

2012-11-22 15:08:36,557 - Sending Master Reset to Bee2 and IBOBs

2012-11-22 15:08:36,884 - Setting equalization on main fpga

2012-11-22 15:08:36,885 - Setting (RE_0, IM_0) to: (140, 55)

Control Software
Initialization

42

2012-11-22 15:08:36,977 - Setting (RE_1, IM_1) to: (127, 253)

2012-11-22 15:08:37,071 - Setting (RE_2, IM_2) to: (127, 0)

2012-11-22 15:08:37,165 - Setting (RE_3, IM_3) to: (72, 106)

2012-11-22 15:08:37,259 - Setting (RE_4, IM_4) to: (0, 0)

2012-11-22 15:08:37,353 - Setting (RE_5, IM_5) to: (0, 0)

2012-11-22 15:08:37,447 - Setting (RE_6, IM_6) to: (0, 0)

2012-11-22 15:08:37,541 - Setting (RE_7, IM_7) to: (0, 0)

2012-11-22 15:08:37,634 - Setting (RE_8, IM_8) to: (0, 0)

2012-11-22 15:08:37,728 - Setting (RE_9, IM_9) to: (0, 0)

2012-11-22 15:08:37,822 - Setting (RE_10, IM_10) to: (0, 0)

2012-11-22 15:08:37,917 - Setting (RE_11, IM_11) to: (0, 0)

2012-11-22 15:08:38,011 - Setting (RE_12, IM_12) to: (0, 0)

2012-11-22 15:08:38,104 - Setting (RE_13, IM_13) to: (0, 0)

2012-11-22 15:08:38,198 - Setting (RE_14, IM_14) to: (0, 0)

2012-11-22 15:08:38,292 - Setting (RE_15, IM_15) to: (0, 0)

2012-11-22 15:08:38,387 - Setting decimation factor to 13

2012-11-22 15:08:40,361 - Setting Data Format to 16.11

2012-11-22 15:08:40,473 - Setting Packet Length to 160

2012-11-22 15:08:40,583 - Setting Monitor IP to 192.168.11.10

2012-11-22 15:08:40,694 - Setting Monitor Port to 64003

2012-11-22 15:08:40,804 - Setting Storage IP to 192.168.11.11

2012-11-22 15:08:40,914 - Setting Storage Port to 64004

2012-11-22 15:08:41,024 - Starting 10GbE interface: monitor

2012-11-22 15:08:41,302 - Starting 10GbE interface: storage

2012-11-22 15:08:41,386 - Performing time update for sync...

2012-11-22 15:08:42,092 - Sending: 2012/11/22 14:08:42 UT

2012-11-22 15:08:43,190 - Received: 2012/11/22 14:08:43 UT after 1 sec.

2012-11-22 15:08:43,190 - Time updated successfully

Initialization Process Successfully Completed!

oper@bee2:/media/data/sdeb$

 It is extremely important that the last line reports a success message about the time
update, a failure may indicate that the running IBOB bit file might be wrong or that the
bee2 bof file has an issue. In any case if the time update fails restart from the beginning.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

43

Scheduling

 Scheduling an observation means to write a “start time” and a “stop time” in the
IBOB registers. This is done by another python script that instantiates a client socket and
send to the BEE2 (over the same port as for the init) the content of a text file, located just
for convention in the “sched” directory, as the following:

oper@bee2:/media/data/sdeb$ more sched/dirac_test_ew.conf

[Obs]

System = fpga4

Start_time = 2012/11/13_09:27:00

Stop_time = 2012/11/13_09:28:00

Target = targetname

 Remember that all times are in UT. The system will produce data only between the
Start_time and Stop_time parameter. Target parameter it is a string that do not have
whitespace because will be a part of the output filename, therefore if you really need
please use only characters allowed, in any case a underscore character will precede and
follow this string. All parameters are case sensitive, do not edit the parameter name but
only the value. The output file name will always be saved starting whit the Start_time date
and time as the following example:

20121113_092700_targetname.dat

Control Software
Storage

44

Storage

 Before to arm the system and load the schedule it is mandatory to start the recorder
server on the storage machine that is the 192.167.189.66 (host alias batman) by opening a
ssh connection (or if possible open a terminal shell in local) and run a script located on
“/media/data/sdeb/” directory.

oper@bee2:~$ ssh -l oper 192.167.189.66

Password:

Last login: Tue Nov 13 10:24:12 2012 from bee2desktop

Have a lot of fun...

oper@batman:~> cd /media/data/sdeb/

 Depending on the system you are using launch the recorder server (they differ only
by the number of fpga):

oper@batman:/media/data/sdeb> ./fpga4_recorder_server.py

server listening on port: 64005

 If you got a failure message it means that a server is already running. To be sure to
do not lost the observation please kill the other instance of the server and start it again as
in the following example.

oper@batman:/media/data/sdeb> ./ fpga4_recorder_server.py

Traceback (most recent call last):

 File "./ fpga4_recorder_server.py", line 74, in <module>

 server = SdebTCPServer(("", 64005))

 File "./ fpga4_recorder_server.py", line 29, in __init__

 SocketServer.TCPServer.__init__(self, addr, SdebTCPHandler)

 File "/usr/lib64/python2.6/SocketServer.py", line 400, in __init__

 self.server_bind()

 File "/usr/lib64/python2.6/SocketServer.py", line 411, in server_bind

 self.socket.bind(self.server_address)

 File "<string>", line 1, in bind

socket.error: [Errno 98] Address already in use

oper@batman:/media/data/sdeb> ps -ef | grep fpga4_recorder_server.py

oper 21620 21380 0 12:07 00:00:00 python ./ fpga4_recorder_server.py

oper 21623 21567 0 12:07 00:00:00 grep fpga4_recorder_server.py

oper@batman:/media/data/sdeb> kill 21620

oper@batman:/media/data/sdeb> ./ fpga4_recorder_server.py

server listening on port: 64005

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

45

Run a schedule

 Load the schedule and arm the system using the python script “sdeb_run” giving as
parameter the schedule file (there is a –L in lower case in the middle):

oper@bee2:/media/data/sdeb$./sdeb_run.py -l sched/dirac_test_ew.conf

2012-11-13 11:45:21,073 - ***

2012-11-13 11:45:21,073 - *************** ARM A NEW OBSERVETION *********

2012-11-13 11:45:21,073 - ***

2012-11-13 11:45:21,073 - Parsing conf. file sched/dirac_test_ew.conf

2012-11-13 11:45:21,074 - Loading observation parameters...

2012-11-13 11:45:21,088 - Loaded START time 2012/11/13 09:27:00 UT

2012-11-13 11:45:21,099 - Loaded STOP time 2012/11/13 09:28:00 UT

2012-11-13 11:45:21,691 - System EW armed!

2012-11-13 11:45:21,711 - Data expected: about 22 MB (24080232 bytes)

2012-11-13 11:45:21,712 - Starting Recording data on 192.167.189.66:64005

2012-11-13 11:45:21,717 - Observation "targetname" Loaded Successfully!

 As you can see the recording server has received a message with the observation info
and it is ready to save a file. As a confirmation on the storage terminal you should see
messages on that.

oper@batman:/media/data/sdeb> ./fpga4_recorder_server.py

server listening on port: 64005

Command received: record 1353598020 targetname 1353598080 24080232

Executing: ./fpga4recorder.py -o targetname -s 2012/11/13_09:27:00 -t

2012/11/13_09:28:00 -e 24080232

318_09:23:00 - INFO: Running with options:

318_09:23:00 - INFO: port: 64004

318_09:23:00 - INFO: pkg length: 8000

318_09:23:00 - INFO: fmt: >Q

318_09:23:00 - INFO: target name: targetname

318_09:23:00 - INFO: start time: 2012/11/13_09:27:00

318_09:23:00 - INFO: stop time: 2012/11/13_09:28:00

318_09:23:00 - INFO: output: data/20121113_092700_fpga4_targetname.dat

318_09:26:59 - INFO: server listening

318_09:27:00 - INFO: recording...

318_09:27:59 - INFO: closing communication

318_09:28:00 - INFO: received up to package: 18931

318_09:28:00 - INFO: closing recorder

Control Software
Real time monitor

46

Real time monitor

Fig. 28: A real time FFT plot observing a debris in a bistatic radar configuration

 During the observation there is the possibility to see a real time fft of the data
generated in the monitor pc running the python script “realtimefft.py”.

oper@bee2:~/andrea/bin$ python ./realtimespectra.py --help

Usage: realtimespectra.py [options]

Options:

 -h, --help show this help message and exit

 -p PORT, --port=PORT

 -k PKG_LEN, --pkg_len=PKG_LEN

 package length expressed in 64b

 -c FFTSIZE, --fftsize=FFTSIZE

 number of fft channels

 -i INTEGR, --intgr_time=INTEGR

 number of integrations

 -w WINDOW, --window=WINDOW

 type of window, default=no window, possible value:

 hamming, hanning, bartlett, kaiser(default shape 10%)

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

47

 This script takes as parameters the number of the FFT channels, the integration time
and if needed also a window to be applied to the FFT.

 Here is a screenshot of the observation of a debris (ID 18096) transiting the
23/11/2012 and detected by the system (left peak).

oper@bee2:~/andrea/bin$ python ./realtimespectra.py –c 1024 –i 100

 The FFT of this picture is a 1024 channel FFT of 100 spectra integrated. In this
configuration you will see a refresh on the screen every about 1 second (100*1024 =
100K), but due to the low channel resolution (100 Hz) there are many cases in which the
information can be hidden with the noise, a post process of the same data using higher
resolution can show not only clear information in terms of frequencies but also the shape
of the passage (doppler shift). The following picture is a plot of the same data with
channel resolution of about 7 Hz without integrating any spectra.

Fig. 29: The doppler shift of the debris ID 18096. Animating this plot the peak

moves from right to left

 There are several consideration of how convenient is to use higher spectral
resolution or integrate more spectra but they are strictly case dependent (power of the
transmitter used, speed of the debris and so on…), but making real time FFT while
observing just as a preview does not really make sense to increase the channel resolution
stressing the CPU especially if there are more than one system going on at the same time.

Validation
Debug tools

48

Validation

Debug tools

 In order to validate the system it has been necessary to develop software and make
some specific basic tests (like transmitting a signal and analyzing it in frequency) that
helped to solve few hidden bugs. The aim of this chapter is also focused on keeping
memory of the encountered problems and how they have been solved: this can be very
useful and can save time for future developments.

 One of the useful debug tools is an omnidirectional
antenna placed on the roof of the Medicina building that
we have used to inject tones on the secondary lobes of
the array radiation pattern. Its RF coax cable is directly
connected to a signal generator, placed in the receiver
room, that provides sinusoidal monochromatic signals
with programmable power and frequency.

 This antenna works in the frequency range between
25MHz to 1300MHz without adding gain.

 The signal generators we have used are: a) the HP
8657B with an output frequency range of 100kHz to
2.6GHz (1Hz resolution) and amplitude from +13dBm to –
143.5dBm into (0.1db resolution); b) the Rohde&Schwarz
SMX Signal Generator with an output frequency range of

100kHz to 1000MHz (10Hz best
resolution, it depends on the output
frequency set) and output level from
+13dbm to -137dbm. Both the signal
generators have an internal oscillator
lockable to the station’s 10MHz
distributed from the Maser. One of
them has been configured and used to

transmit a monochromatic tone with
the omnidirectional antenna to a frequency very close (~ 25KHz) to the center of the RF
bandwidth (408MHz); the other one has been used for providing the A/D clock.

Fig. 30: Omnidirectional Antenna

Fig. 31: HP 8657B

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

49

 The frequency analysis has been
performed using a software that
processes stored data because we do not
have in our labs a spectrum analyzer able
to reach the 1 Hertz resolution.

 This software provides only results
useful for debug and it has been written
in IDL which is a scientific language. It is a
project based on widget running on a microsoft windows platform (even if the IDL code is
portable on every platform as it is if you do not use absolute file path), very easy to use
and user friendly (messages will help you to set parameters).

Fig. 33: The main widget of the IDL spectrometer

Fig. 32: Rohde&Schwarz SMX

Validation
Debug tools

50

 Running the IDL project it is shown the main widget as in the picture above. The
upper part where it is shown an artistic view of the Medicina station and its radio
telescopes it is the plot drawn area.

 By clicking on the LOAD push button you can select the input file on a dialog window.
This input file is the “dat” file saved by the beamformer storage. The size of the file and
the observation time will be reported taking into account the value written into the
“sample rate” text box, by default, this value has been set to 100334Hz which is the
sample rate of the beamformer.

 The FFT channel and the integration time needs to be set depending on what we are
going to investigate. If we want to check if the monochromatic tone has been detected at
the expected frequency we need to have a channel resolution of 1 Hz, therefore, if we set
65536 number of channel over a sample rate of 100KHz the resulting resolution is 1.53Hz,
remembering that the FFT it is an algorithm optimized to work to 2 power numbers.
However, increasing the number of channels means increase the number of samples
needed to compute the FFT, that means you are increasing the time window. If we want
to see a fast debris transiting over the antenna beam using many samples to have a high
accuracy can be a wrong approach. The following table shows some elementary
configurations with very interesting numbers:

Num. of Channels Chan. Resolution (Hz) Time (s)

1024 97.98242 0.010205912

2048 48.99121 0.020411825

4096 24.49561 0.040823649

8192 12.2478 0.081647298

16384 6.123901 0.163294596

32768 3.061951 0.326589192

65536 1.530975 0.653178384

131072 0.765488 1.306356768
Tab. 7: Channel Resolution and Time Window over Number of Channels

 This table is useful but incomplete, because increasing the spectra resolution (and
consequently the time window) the measured power of the detected debris will decrease
but we have no measured how long in terms of db. On the other hands, if you are looking
to a constant tone, which is not a pulse, increasing the time window and the channel
resolution also the frequency line of the tone will increase because the power of the
signal will be not affected by the “lower” frequencies contained on the same channel.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

51

Sampling

 The samples must be acquired regularly, this is the requirements of the Fourier
Transform. If the samples are not equally spaced in time the resulting frequencies will be
wrong. To test if the sampler is working well it is necessary to analyze carefully the spectra
using the higher channel resolution, possibly 1 Hz per channel.

 The test consists to transmit a tones of a certain frequencies with the
omnidirectional antenna and look at the frequencies line in the spectra, one at the time,
they have to match.

Fig. 34: Overplotting FFTs of the entire file you can recognize the frequencies used for the test.

Validation
Sampling

52

 Making this test we have found a misbehavior of one signal generator, the HP 8657B
that probably has begun to work bad. We have scan many frequencies as seen on the
previous picture and analyzing the tones at Hertz resolution and comparing the signal
generators we have found very little difference as shown on the following pictures:

Fig. 35: Frequency 407.970kHz sampled using the HP 8657B as clock sampler.

The read frequency results 407.974kHz, 4Hz difference

Fig. 36: Frequency 407.970kHz sampled using the Rohde&Schwarz SMX as clock sampler.

The read frequency results exactly 407.970kHz

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

53

Fast Fourier Transform Considerations

 There is an important consideration to be done talking of channelization and
accuracy of FFT. As you can see on the previous pictures also the peak observed with the
Rohde&Schwarz is not exactly centered to the 407.970kHz frequency. This is due by the
definition of the FFT algorithm which is an optimized extension of the Fourier Transform,
computational complexity is reduced from to (). Regarding complex input
data, frequency lines occur at intervals , where:

and because sample rate and number of channels are not necessarily multiple, most of
the time is not an integer number. The FFT algorithm works efficiently if the number of
channels is a 2’s power number and the total bandwidth has not been chosen taking into
account this aspect. Each channel can be referred to as frequency bins (or FFT bins)
because you can think of an FFT as a set of parallel filters of bandwidth centered at
each frequency increment of and it contains a power contribute of frequencies
contained on the same channel.

Fig. 37: FFT bins

 The above picture shows how the red points (FFT lines) are the center of the FFT bins
(or FFT channels) of width (unless the first and the last channel that have half width)
bounded within

 Looking at our application, in the specific configuration of using 65536 FFT channels

Validation
Fast Fourier Transform Considerations

54

where the central frequency 408MHz is placed on the channel number 32768 and
represents the power contribution between

 That means, if we want to check a specific frequency we should use frequencies
which correspond to the center of that frequency channel. For instance the center of the
frequency channel drawn on the previous pictures, the 407.970MHz, should have been
407970000.404Hz, and it contains the power measured within the limit:

which includes the 407.970kHz frequency line, but its contributed has been drowned in
the 407970000.404Hz line. As a confirmation, the peak of the measured tone on the
second picture (Rohde&Schwarz) is just to the right of the -30kHz (relative to the center of
408MHz, therefore 407.970MHz) of about half Hertz confirming the calculated center
(407970000.404Hz), but is representing also the tone transmitted to exactly 407.970MHz.

 Even if the frequency to be transmitted should match with a center of a bin, the
frequency resolution of the signal generators (1Hz in case of the HP and 10Hz the
Rohde&Schwarz) does not allowed to fit exactly the requirements, therefore frequencies
for the test have been chosen arbitrary.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

55

Signal Generation Report

 Here shown in the next table the results of the scan test:

Frequency
(MHz)

HP 8657B
∆ (Hz)

Rohde&Schwarz SMX
∆ (Hz)

407.960 0 0

407.970 +4.5 0

407.975 0 0

407.980 +21 0

407.990 +21 0

408.010 +22 0

408.020 +22 0

408.025 +25 0

408.030 +24 0

408.040 +20 0

Tab. 8: Delta Frequencies of the two signal generators

 Both the signal generators have been locked to the same 10MHz distributed from
the Maser, we have investigated also if the level of the reference input for the HP was too
high and saturated but it was within the specifics, therefore we conclude that the HP is
not suitable to be used as a A/D clock generator for spectrometry at that frequencies,
maybe the PLL of the synthesizer has started to have troubles.

Results

56

Results

 Here we examine the results of some observational tests performed in order to
check the beamformer system. The aim of these measurements was the comparison
between the simulated and the observed beams.

 The Northern Cross incapability to track objects and the narrow bandwidth (100 KHz)
of the Space Debris acquisition system imposed the observation of very strong radio
sources at 408 MHz (Tab. 1) in order to have a good SNR.

Source
RA J2000

[hh mm ss.s]
Dec J2000

[dd pp ss.ss]
Flux density @ 408 MHz

[Jy]

Cyg-A 19 59 28.4 +40 44 02.10 4862

Tau-A 05 34 31.9 +22 00 52.2 1215

Vir-A 12 30 49.4 +12 23 28.04 486

Tab. 9: The three radio-sources observed for the beamformer test.

 The total power was obtained with 1 second of time integration from the data
acquired in the time domain. It allowed us to describe the beam shape for both a single
receiver and a beam synthetized from 4 receivers. The receiver phases were previously
calibrated utilizing the interferometric fringes recorded with 2 MHz band.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

57

 The theoretical E-plane primary beams of the two configurations are shown in Fig.38.

Fig. 38: Normalized E-plane power patterns calculated for a single E-W receiver (dotted black line) and
for a synthetized beam of 4 receivers (continuous blue line).

 The theoretical -3dB beam width of a single E-W channel is about 0.4°, while the sum
of the 4 channels yields a value of about 0.1°. These values were compared to those
obtained from the signal total power recorded during the transit of Cygnus-A (Fig. 39),
Virgo-A (Fig. 40) and Taurus-A (Fig. 41) within the antenna beam. A synthetized beam of 2
receivers was also produced for the Taurus-A observation.

-0.2587 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

-3

-2.5

-2

-1.5

-1

-0.5

0

BEAMPATTERN

Angle [deg.]

N
o
rm

a
liz

e
d
 g

a
in

 [
d
B

]

4 Receivers

1 Receiver

Results

58

Fig. 39: Transit of Cygnus-A observed by a single E-W receiver (dashed black line) and by a
synthetized beam of 4 receivers (continuous blue line).

Fig. 40: Transit of Virgo-A observed by a single E-W receiver (dashed black line) and by a
synthetized beam of 4 receivers (continuous blue line).

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

59

Fig. 41: Transit of Taurus-A observed by a single E-W receiver (dashed black line), by a
synthetized beam of 2 receivers (dashed dotted red line) and of 4 receivers (continuous blue line)

 The half power beamwidth, , can be calculated according to the following
equation:

 ()
 ()

where

 source declination
 transit time, expressed in s, at half power signal

 The calculated beamwidths as well as the signal amplitude ratios acquired by the
different antenna configurations are in good agreement with the theoretical values for
Virgo-A and Taurus-A. Whereas the Cygnus-A expected beamwidth and signal amplitude
significantly differ from the observed ones. The disagreement was probably due to the
analogue receivers saturation caused by the extremely high flux of this source.

 Moreover the maximum of the signal, corresponding to the transit of the source at
the local meridian, happens some seconds earlier than expected. This time difference
could be caused by an antenna mechanical misalignment of about one arcmin in the East
direction.

Results

60

 Finally, the system has been tested in a real observational scenario during the space
debris radar campaigns carried out by the Northern Cross array on July and December
2012. Several targets orbiting in LEO were successfully acquired by this beamformer
system with a very high SNR.

 An example of space debris radar detection is the observation of the first passage of
the NEXTSAT satellite during the 2012 December 17 radar session. This target was a
deactivated satellite (USSTRATCOM catalogue n. 30774) orbiting in LEO. The echo of
NEXTSAT (Fig. 42), having a mean extimated Radar Cross Section (RCS) of 3.679 , was
detected in the frequency domain by a FFT analysis with 16384 channels, corresponding
to a spectral resolution of 6.1 Hz/ch.

Fig. 42: Spectrum of the echo from the target NEXTSAT detected during on 2012 December 17 at
09:01:06.25 UT. The spectral window is centred at the transmitting frequency. Due to the extremely high

SNR of the echo, the signal amplitude is plotted in logarithmic scale.

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

61

 The target was orbiting at an altitude of 510.49 km with a bistatic slant range (signal
total path length) of about 1057 km. The observed transit time and bistatic frequency
Doppler shift were slightly different to those calculated from the TLEs by the orbital
numeric propagators (e.g. SGP4). These differences between observed and calculated
values are of extremely importance to improve the knowledge of the target orbit that is
one of the most important goal of the space debris investigation.

Python scripts
Beecool

62

Python scripts

Beecool

Readme

Copy all those files in the same bee2 directory.

Requirements:

- At least one bof file running

Run “start_server.py” and follow the instructions.

start_server.py

#! /usr/bin/env python

"""

Search the bof PID.

eg usage:

"""

import os, time

branches=['61001', '62001', '63001','64001']

os.system("ps -ef | grep bof | grep fpga > pid/pids.txt")

print "\n###\n"

print "Beamformer Server Launch Wizard"

print "\nPlease follow the instruction...\n"

data = []

for line in open("pid/pids.txt",'r').readlines():

 #print line.split()[1], line.split()[7]

 data.append([line.split()[1],line.split()[7]])

c=0

data.pop()

for i in data:

 print '['+str(c+1)+'] ', data[c][0], data[c][1]

 c = c+1

print "\nSelect the PID index: ",

pid = raw_input()

print "\n\n[1] NS (usually IBOB2-BEE1)"

print "[2] EW (usually IBOB7-BEE4)\n"

print "Select the branch: ",

branch = raw_input()

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

63

time.sleep(0.2)

print "\n##"

print "\nStarting server for"

print " PID: "+data[c-1][0]

print " BOF: "+data[c-1][1]+"\n"

time.sleep(0.2)

cmd="./bee_sdeb_server.py -p "+branches[int(branch)-1]+" -i "+data[c-1][0]

#print cmd

os.system(cmd)

bee_sdeb_server.py

#!/usr/bin/env python

"""

Server running on bee2 waiting for nitialization commands.

"""

import struct

import sys

import os

import SocketServer

from optparse import OptionParser

class PIDException(Exception):

 def __init__(self, msg):

 Exception.__init__(self, msg)

class CommandException(Exception):

 def __init__(self, msg):

 Exception.__init__(self, msg)

class LofarTCPHandler(SocketServer.StreamRequestHandler):

 def handle(self):

 self.data = self.rfile.readline().strip()

 print "received: " + self.data

 args = self.data.split()

 try:

 res = self.server.execute(args)

 self.wfile.write(str(res))

 except CommandException, ce:

 self.wfile.write(ce.args[0])

class LofarTCPServer(SocketServer.TCPServer):

 def __init__(self, addr, pid):

 SocketServer.TCPServer.__init__(self, addr, LofarTCPHandler)

 self.pid = pid

 self.base_path = "/proc/%s/hw/ioreg/"%(pid,)

 self.devs = os.listdir(self.base_path)

 self.commands = {

 "listdev": self.listdev,

 "write_int": self.write_int,

 "read_int": self.read_int,

 "read_bram": self.read_bram,

 "ask_pid": self.ask_pid,

 "start_gbe": self.start_gbe,

 }

 def listdev(self):

 return " ".join(self.devs)

Python scripts
Beecool

64

 def ask_pid(self):

 return self.pid

 def _valid_register(self, name):

 if not name in self.devs:

 raise CommandException("Register %s not found."%(name,))

 def read_int(self, reg_name):

 self._valid_register(reg_name)

 f = open(os.path.join(self.base_path, reg_name), "rb")

 bs = f.read(4)

 f.close()

 res = struct.unpack(">L", bs)[0]

 return res

 def write_int(self, reg_name, reg_value):

 self._valid_register(reg_name)

 try:

 reg_value = int(reg_value)

 print "writing: " + str(reg_value)

 except:

 raise CommandException("write_int second argument should be an

integer")

 f = open(os.path.join(self.base_path, reg_name), "wb")

 f.write(struct.pack(">L", reg_value))

 f.flush()

 f.close()

 return "SUCCESS"

 def start_gbe(self, gbe_conf_file, gbe_name):

 print "Executing: cp "+gbe_conf_file+" "+self.base_path+gbe_name

 a = os.system("cp "+gbe_conf_file+" "+self.base_path+gbe_name)

 return a

 def read_bram(self, bram_name, bram_len):

 self._valid_register(bram_name)

 f = open(os.path.join(self.base_path, bram_name), "rb")

 bs = f.read(bram_len)

 f.close()

 return bs

 def execute(self, args):

 if not self.commands.has_key(args[0]):

 raise CommandException("Command %s not found."%(args[0],))

 if len(args) > 1:

 try:

 res = self.commands[args[0]](*(args[1:]))

 except TypeError, te:

 raise CommandException(te.args[0])

 else:

 res = self.commands[args[0]]()

 return res

def verifyPID(pid):

 pid = str(pid)

 pipe = os.popen("ps a | grep %s"%(pid,))

 pss = pipe.readlines()

 pipe.close()

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

65

 pss = [ps[:-1].split() for ps in pss if ps.split()[0] == pid]

 if not pss:

 raise PIDException("Process %s not found."%(pid,))

 if not pss[0][-1].endswith(".bof"):

 raise PIDException("Process %s is not a running bof file design"%(pid,))

if __name__ == "__main__":

 op = OptionParser()

 op.add_option('-p', '--port', dest='port', type='int', default=60001,

 help='The listening port')

 op.add_option('-i', '--pid', dest='pid',

 help='The process id (pid) of the running bof file')

 opts, args = op.parse_args(sys.argv[1:])

 pid = str(opts.pid)

 try:

 verifyPID(pid)

 except PIDException, pe:

 print pe.args[0]

 sys.exit(0)

 #server = SocketServer.TCPServer(("localhost", opts.port), LofarTCPHandler)

 server = LofarTCPServer(("", opts.port), pid)

 try:

 print "server listening on port: " + str(opts.port)

 server.serve_forever()

 except KeyboardInterrupt:

 print "closing communication"

 del(server)

 sys.exit(0)

gbe_fpga1_monitor.conf

begin

 mac = 00:12:6D:AE:0B:13

 ip = 192.168.11.13

 gateway = 192.168.11.10

 port = 61003

end

gbe_fpga1_storage.conf

begin
 mac = 00:12:6D:AE:0B:14

 ip = 192.168.11.14

 gateway = 192.168.11.10

 port = 61004

end

gbe_fpga2_monitor.conf

begin

 mac = 00:12:6D:AE:0B:23

 ip = 192.168.11.23

 gateway = 192.168.11.10

 port = 62003

end

gbe_fpga2_storage.conf

begin

 mac = 00:12:6D:AE:0B:24

 ip = 192.168.11.24

 gateway = 192.168.11.10

 port = 62004

end

Python scripts

66

gbe_fpga3_monitor.conf

begin

 mac = 00:12:6D:AE:0B:33

 ip = 192.168.11.33

 gateway = 192.168.11.10

 port = 63003

end

gbe_fpga3_storage.conf

begin

 mac = 00:12:6D:AE:0B:34

 ip = 192.168.11.34

 gateway = 192.168.11.10

 port = 63004

end

gbe_fpga4_monitor.conf

begin

 mac = 00:12:6D:AE:0B:43

 ip = 192.168.11.43

 gateway = 192.168.11.10

 port = 64003

end

gbe_fpga4_storage.conf

begin

 mac = 00:12:6D:AE:0B:44

 ip = 192.168.11.44

 gateway = 192.168.11.10

 port = 64004

end

Control

Readme

Decide how many receivers are you going to use and type the phase corrections

on the ew_beamf.conf (or ns_beamf.conf) file.

Requirements:

 - a bof file running on the bee2 (beecool)

 - a server running on the bee2 (beecool)

 - a recorder server running on 192.167.189.66 (batman)

1. Initialization

 Run: ./sdeb_init.py -l ew_beamf.conf

Example:

Last login: Tue Nov 13 10:16:11 2012 from 192.167.189.65

oper@bee2:~$ cd /media/data/sdeb/

oper@bee2:/media/data/sdeb$./sdeb_init.py -l ew_beamf.conf

2012-11-13 10:19:16,294 - ***************************************

2012-11-13 10:19:16,294 - ******* INITIALIZATION PROCESS ********

2012-11-13 10:19:16,294 - ***************************************

2012-11-13 10:19:16,294 - parsing configuration file ew_beamf.conf

2012-11-13 10:19:16,295 - Initializing the Space Debris system

2012-11-13 10:19:16,295 - Sending Master Reset to Bee2 and IBOBs

2012-11-13 10:19:16,630 - Setting equalization on main fpga

2012-11-13 10:19:16,630 - Setting (RE_0, IM_0) to: (127, 0)

2012-11-13 10:19:16,722 - Setting (RE_1, IM_1) to: (127, 0)

2012-11-13 10:19:16,816 - Setting (RE_2, IM_2) to: (127, 0)

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

67

2012-11-13 10:19:16,909 - Setting (RE_3, IM_3) to: (127, 0)

2012-11-13 10:19:17,003 - Setting (RE_4, IM_4) to: (0, 0)

2012-11-13 10:19:17,096 - Setting (RE_5, IM_5) to: (0, 0)

2012-11-13 10:19:17,190 - Setting (RE_6, IM_6) to: (0, 0)

2012-11-13 10:19:17,283 - Setting (RE_7, IM_7) to: (0, 0)

2012-11-13 10:19:17,377 - Setting (RE_8, IM_8) to: (0, 0)

2012-11-13 10:19:17,471 - Setting (RE_9, IM_9) to: (0, 0)

2012-11-13 10:19:17,564 - Setting (RE_10, IM_10) to: (0, 0)

2012-11-13 10:19:17,658 - Setting (RE_11, IM_11) to: (0, 0)

2012-11-13 10:19:17,751 - Setting (RE_12, IM_12) to: (0, 0)

2012-11-13 10:19:17,845 - Setting (RE_13, IM_13) to: (0, 0)

2012-11-13 10:19:17,939 - Setting (RE_14, IM_14) to: (0, 0)

2012-11-13 10:19:18,032 - Setting (RE_15, IM_15) to: (0, 0)

2012-11-13 10:19:18,126 - Setting decimation factor to 13

2012-11-13 10:19:20,099 - Setting Data Format to 16.11

2012-11-13 10:19:20,211 - Setting Packet Length to 160

2012-11-13 10:19:20,321 - Setting Monitor IP to 192.168.11.10 (3232238346)

2012-11-13 10:19:20,432 - Setting Monitor Port to 64003

2012-11-13 10:19:20,542 - Setting Storage IP to 192.168.11.11 (3232238347)

2012-11-13 10:19:20,651 - Setting Storage Port to 64004

2012-11-13 10:19:20,761 - Starting 10GbE interface: monitor

2012-11-13 10:19:20,834 - Starting 10GbE interface: storage

2012-11-13 10:19:20,909 - Performing time update for sync...

2012-11-13 10:19:21,014 - Sending: 2012/11/13 09:19:21 UT (timestamp: 1352798361)

2012-11-13 10:19:22,155 - Received: 2012/11/13 09:19:22 UT (timestamp:

1352798362)

2012-11-13 10:19:22,155 - Time updated successfully

Initialization Process Successfully Completed!

2. Prepare an observation file

 - Edit a sched file on 'sched' directory.

Example:

oper@bee2:/media/data/sdeb$ more sched/dirac_test_ew.conf

[Obs]

System = EW

Start_time = 2012/11/13_09:27:00

Stop_time = 2012/11/13_09:28:00

Target = targetname

3. Load observation file and arm the system

 - Run "./sdeb_run.py -l sched/dirac_test_ew.conf" with the sched file

oper@bee2:/media/data/sdeb$./sdeb_run.py -l sched/dirac_test_ew.conf

2012-11-13 10:26:23,423 -

2012-11-13 10:26:23,423 - ****************** ARM A NEW OBSERVETION

2012-11-13 10:26:23,423 -

2012-11-13 10:26:23,423 - Parsing configuration file sched/dirac_test_ew.conf

2012-11-13 10:26:23,423 - Loading observation parameters...

2012-11-13 10:26:23,439 - Loaded START time 2012/11/13 09:27:00 UT (timestamp:

1352798820)

Python scripts
Control

68

2012-11-13 10:26:23,451 - Loaded STOP time 2012/11/13 09:28:00 UT (timestamp:

1352798880)

2012-11-13 10:26:24,042 - System EW armed!

2012-11-13 10:26:24,060 - Data expected: about 22 MB (24080232 bytes)

2012-11-13 10:26:24,061 - Starting Recording data on 192.167.189.66:64005

2012-11-13 10:26:24,067 - Observation "targetname" Loaded Successfully!

oper@bee2:/media/data/sdeb$

dataconversion.py (author Marco Bartolini)

"""Module dataconversion:

functions to convert numbers to and from simulink representation.

Permits conversion of 8, 16 and 32 bit representation of signed and unsigned

decimal numbers, with or without binary point.

classes:

 ConversionError: bit mismatch and format incopatibility

functions:

 get_conversion_t: factory function of conversion specs

 unsigned2real: convert from simluink representation

 bytes2real: convert binary data from simulink representation

 stream2real: convert array of binary data

 real2unsigned: convert a real number into simluink representation

"""

import struct

class ConversionError(Exception):

 def __init__(self, msg):

 Exception.__init__(self, msg)

def get_conversion_t(bits, bin_point, signed=False, scaling=1.0):

 """

 bits = the number of bits

 bin_poin = simulink binary point position

 signed = True if Fix, Flase if UFix

 scaling = optional scaling to be applied after the conversion

 returns a conversion structure that can be applied in both directions of

 conversion for the given specs.

 """

 conversion_t = {}

 conversion_t["bits"] = bits

 conversion_t["bin_point"] = bin_point

 conversion_t["signed"] = signed

 conversion_t["scaling"] = scaling

 conversion_t["dec_step"] = 1.0 / (2 ** bin_point)

 #dec_max = dec_mask * dec_step

 conversion_t["dec_mask"] = sum([2 ** i for i in range(bin_point)])

 if bits == 8:

 conversion_t["fmt"] = "B"

 elif bits == 16:

 conversion_t["fmt"] = "H"

 elif bits == 32:

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

69

 conversion_t["fmt"] = "I"

 else:

 raise ConversionError("numer of bits not supported: " + str(bits))

 if signed:

 _get_signed_params(conversion_t)

 else:

 _get_unsigned_params(conversion_t)

 return conversion_t

def _get_unsigned_params(conv):

 conv["sign_mask"] = 0

 conv["int_min"] = 0

 conv["int_mask"] = sum([2 ** i for i in range(conv["bin_point"],

conv["bits"])])

 conv["int_max"] = sum([2 ** i for i in range(conv["bits"] -

 conv["bin_point"])])

def _get_signed_params(conv):

 conv["sign_mask"] = 2 ** (conv["bits"] - 1)

 conv["int_min"] = -1 * (2 ** (conv["bits"] - 1 - conv["bin_point"]))

 conv["int_mask"] = sum([2 ** i for i in range(conv["bin_point"], conv["bits"]

- 1)])

 conv["int_max"] = sum([2 ** i for i in range(conv["bits"] -

 conv["bin_point"] - 1)])

def unsigned2real(uval, conv):

 """

 uval = the numeric unsigned value in simulink representation

 conv = conv structure with conversion specs

 returns the real number represented

 """

 res = 0

 int_val = ((uval & conv["int_mask"]) >> conv["bin_point"])

 dec_val = conv["dec_step"] * (uval & conv["dec_mask"])

 sign = uval & conv["sign_mask"]

 res = conv["int_min"] + int_val + dec_val

 return (res / conv["scaling"])

def bytes2real(ub, conv, endianness="@"):

 """

 ub = binary number in simulink representation

 conv = conv structure with conversion specs, dimensions must match

 endianness = optionally specify bytes endianness for unpacking

 return the real number represented

 """

 data = struct.unpack(endianness + conv["fmt"], ub)[0]

 return convert(data, conv)

def stream2real(stream, conv, endianness="@"):

 size = len(stream) // (conv["bits"] // 8)

 fmt = endianness + str(size) + conv["fmt"]

 data = struct.unpack(fmt, stream)

 data = [convert(d, conv) for d in data]

 return data

def real2unsigned(real, conv):

Python scripts
Control

70

 """

 real = the real number to be converted into simulink representation

 conv = conv structre with conversion specs

 return the unsigned int for the simulink representation. Raise a

 ConverisonError if conv structre can't handle the number.

 """

 if not conv["signed"] and real < 0:

 raise ConversionError("cannot convert " + str(real) + " to unsigned

representation")

 if real < 0:

 sign = 1

 real = real - conv["int_min"]

 else:

 sign = 0

 int_val, dec_val = divmod(abs(real), 1)

 int_val = int(conv["int_min"] + int_val)

 int_val = int_val & (conv["int_mask"] >> conv["bin_point"])

 val = int_val

 dec = 0

 while val < real and dec < conv["dec_mask"]:

 val += conv["dec_step"]

 dec += 1

 #Adjusting rounding error

 if (val - real) > (real - val + conv["dec_step"]):

 dec -= 1

 if sign == 1:

 return conv["sign_mask"] + ((int_val << conv["bin_point"]) &

 conv["int_mask"]) + dec

 else:

 return ((int_val << conv["bin_point"]) & conv["int_mask"]) + dec

pack_sdeb_pars_conf.py (author Marco Bartolini)

import ConfigParser

def get_fpga_conf(conf, section):

 fpga = {}

 fpga['server'] = {'addr': conf.get(section, "server").split(":")[0],

 'port' : int(conf.get(section, "server").split(":")[1])

 }

 #fpga['equalization'] = [(conf.getint(section, "RE_%i"%(i,)),

conf.getint(section, "IM_%i"%(i,))) for i in range(8)]

 fpga['equalization'] = []

 for i in range(16):

 try:

 fpga['equalization'].append(get_float_comment(conf, section,

"d%i"%(i,)))

 except ValueError:

 fpga['equalization'].append(None)

 return fpga

def get_float_comment(conf, section, option):

 return float(conf.get(section, option).split()[0])

def parse_settings(filename):

 conf = ConfigParser.SafeConfigParser()

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

71

 #print "Parsing config file " + filename

 res = {}

 if not [filename] == conf.read(filename):

 print conf.read(filename)

 print "Cannot parse file " + filename

 return res

 res["dec_factor"] = conf.getint("global", "dec_factor")

 res["bee_dec_factor"] = conf.getint("global", "bee_dec_factor")

 res["integration"] = conf.getint("global", "integration")

 res["main_fpga"] = get_fpga_conf(conf, "main_fpga")

 res["data_format"] = conf.getint("global", "data_format")

 res["pck_length"] = conf.getint("global", "pck_length")

 res["gbe1_filename"] = conf.get("global", "gbe1_filename")

 res["gbe1_name"] = conf.get("global", "gbe1_name")

 res["monitor_ip"] = conf.getint("global", "monitor_ip")

 res["monitor_port"] = conf.getint("global", "monitor_port")

 res["gbe2_filename"] = conf.get("global", "gbe2_filename")

 res["gbe2_name"] = conf.get("global", "gbe2_name")

 res["storage_ip"] = conf.getint("global", "storage_ip")

 res["storage_port"] = conf.getint("global", "storage_port")

 return res

if __name__ == "__main__":

 filename = "ns_beamf_time.conf"

 options = parse_settings(filename)

 print options

pack_sdeb_pars_obs.py

import ConfigParser

def parse_settings(filename):

 conf = ConfigParser.SafeConfigParser()

 res = {}

 if not [filename] == conf.read(filename):

 print conf.read(filename)

 print "Cannot parse file " + filename

 return res

 res["System"] = conf.get("Obs", "System")

 res["Start_time"] = conf.get("Obs", "Start_time")

 res["Stop_time"] = conf.get("Obs", "Stop_time")

 res["Target"] = conf.get("Obs", "Target")

 return res

pack_sdeb_pars_systems.py

import ConfigParser

Python scripts
Control

72

def parse_settings(filename,obs_system):

 conf = ConfigParser.SafeConfigParser()

 res = {}

 if not [filename] == conf.read(filename):

 print conf.read(filename)

 print "Cannot parse file " + filename

 return res

 res['server'] = {'addr': conf.get("Systems", obs_system).split(":")[0],

 'port' : int(conf.get("Systems", obs_system).split(":")[1])

 }

 return res

config_wizard.py

#! /usr/bin/env python

"""

Search the bof PID.

eg usage:

"""

import os

import datetime,time

tempfile = "config.temp"

rx_names = ['LOFAR antennas', 'NS receivers', 'EW channels']

rx_name = [['2B', '1N-1-3', '4E'],

 ['3A', '1N-1-4', '5E'],

 ['1B', '1N-1-1', '2E'],

 ['2A', '1N-1-2', '3E'],

 ['4B', '2N-1-3', ''],

 ['5A', '2N-1-4', ''],

 ['3B', '2N-1-1', ''],

 ['4A', '2N-1-2', ''],

 ['6B', '3N-1-3', ''],

 ['7A', '3N-1-4', ''],

 ['5B', '3N-1-1', ''],

 ['6A', '3N-1-2', ''],

 ['8B', '4N-1-3', ''],

 ['9A', '4N-1-4', ''],

 ['7B', '4N-1-1', ''],

 ['8A', '4N-1-2', '']]

dataora = datetime.datetime.utcnow()

calib_date = "(date n/a)"

calib_time = "(time n/a)"

calib_source = "(source name n/a)"

print "\n###\n"

print "Beamformer Configuration file Wizard"

print "\nPlease follow the instruction...\n"

f = open(tempfile,'w');

text = "##\n#\n"

text += "# Configuration file automatically generated by using\n# the Wizard on "

text += dataora.strftime("%d/%m/%Y %H:%M:%S")+" UT"

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

73

f.write(text)

text = "\n\n# NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS! "

f.write(text)

text = "\n\n# design global parameters "

text += "\n[global] "

text += "\ndec_factor = 13 "

text += "\nbee_dec_factor = 23 "

text += "\n\n# integration for on board data accumulation "

text += "\nintegration = 100334"

f.write(text)

text = "\n\n# Common network parameters"

text += "\nmonitor_ip = 3232238346"

text += "\nstorage_ip = 3232238347"

text += "\npck_length = 160"

text += "\ngbe1_name = monitor"

text += "\ngbe2_name = storage"

f.write(text)

time.sleep(0.3)

print "+-----------+-----------+ "

print "| 2 | 3 | "

print "+-----------+-----------+ BEE2 FPGAs"

print "| 1 | 4 | "

print "+-----------+-----------+ \n"

print "[1] BEE FPGA-1 (front - left) "

print "[2] BEE FPGA-2 (rear - left) "

print "[3] BEE FPGA-3 (rear - right) "

print "[4] BEE FPGA-4 (front - right) "

print "\nWhich BEE2 FPGA are you going to use [1/2/3/4]? ",

branch = raw_input()

if branch == '1':

 text = "\n\n# Parameters for the FPGA1 system"

 text += "\nmonitor_port = 61003"

 text += "\nstorage_port = 61004"

 text += "\ngbe1_filename = gbe_fpga1_monitor.conf"

 text += "\ngbe2_filename = gbe_fpga1_storage.conf"

if branch == '2':

 text = "\n\n# Parameters for the FPGA2 system"

 text += "\nmonitor_port = 62003"

 text += "\nstorage_port = 62004"

 text += "\ngbe1_filename = gbe_fpga2_monitor.conf"

 text += "\ngbe2_filename = gbe_fpga2_storage.conf"

if branch == '3':

 text = "\n\n# Parameters for the FPGA3 system"

 text += "\nmonitor_port = 63003"

 text += "\nstorage_port = 63004"

 text += "\ngbe1_filename = gbe_fpga3_monitor.conf"

 text += "\ngbe2_filename = gbe_fpga3_storage.conf"

if branch == '4':

 text = "\n\n# Parameters for the FPGA4 system"

Python scripts
Control

74

 text += "\nmonitor_port = 64003"

 text += "\nstorage_port = 64004"

 text += "\ngbe1_filename = gbe_fpga4_monitor.conf"

 text += "\ngbe2_filename = gbe_fpga4_storage.conf"

f.write(text)

print "\n[1] Fix 16.11"

print "[2] Fix 16.12"

print "Which data cast are you going to use [1/2]? ",

datacast = raw_input()

if datacast == '1':

 text = "\n# Data cast 16.11"

 text += "\ndata_format = 1"

else:

 text = "\n# Data cast 16.12"

 text += "\ndata_format = 0"

f.write(text)

text = "\n[main_fpga]"

if branch == '1':

 text += "\nserver = beecool:61001"

else:

 if branch == '2':

 text += "\nserver = beecool:62001"

 else:

 if branch == '3':

 text += "\nserver = beecool:63001"

 else:

 if branch == '4':

 text += "\nserver = beecool:64001"

f.write(text)

print "\n"

i=0

while i<3:

 print "["+str(i+1)+"] "+rx_names[i]

 i = i + 1

print "\nWhich antennas are connected to the system [1/2/3]?",

rxnames = raw_input()

names = int(rxnames)

if names == 1:

 calib_file = "last_calib_lofar.conf"

else:

 if names == 2:

 calib_file = "last_calib_ns.conf"

 else:

 calib_file = "last_calib_ew.conf"

i=0

try:

 for line in open(calib_file,'r').readlines():

 if line[:4] == 'data':

 calib_date = line.split()[2]

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

75

 calib_time = line.split()[3]

 else:

 if line[:6] == 'source':

 calib_source = line.split()[2]

 else:

 if not line[0] == '#':

 rx_name[i][names-1] = [rx_name[i][names-1] , line.split()[2]]

 i=i+1

except:

 pass

print "\nLastest phase calibrations have been done \non "+calib_date+" at

"+calib_time+" using radiosource "+calib_source+"\n"

confermi = 'n'

while not confermi == '0':

 if not confermi == 'n':

 print "\nThe \""+rx_name[int(confermi)-1][names-1][0]+"\" was set to

\""+rx_name[int(confermi)-1][names-1][1]+"\", type the new value: ",

 rx_name[int(confermi)-1][names-1][1] = raw_input()

 print "\nThe value for \""+rx_name[int(confermi)-1][names-1][0]+"\" has

been changed to \""+rx_name[int(confermi)-1][names-1][1]+"\"\n\n"

 i = 0

 while i<16:

 print "["+str(i+1)+"]\t"+ rx_name[i][names-1][0] +" = "+

rx_name[i][names-1][1]

 i = i+1

 if ((i>3) and (names == 3)):

 i = 16

 if rxnames == '1':

 print "\n\"none\" means antenna off"

 print "\nEdit an antenna by typing the index in the brackets\n or

type zero [0] to confirm the configuration: ",

 else:

 if rxnames == '2':

 print "\n\"none\" means receiver off"

 print "\nEdit a receiver by typing the index in the brackets\n or

type zero [0] to confirm the configuration: ",

 else:

 print "\n\"none\" means channel off"

 print "\nEdit a channel by typing the index in the brackets\n or

type zero [0] to confirm the configuration: ",

 confermi = raw_input()

i = 0

text = "\n#Phase shift in degrees for each single antenna\n#none: mute antenna"

f.write(text)

text = ""

while i<16:

 text += "\nd"+str(i)+" = "+rx_name[i][names-1][1]+" # "+rx_name[i][names-

1][0]

 i = i+1

f.write(text)

text = "\n###\n"

f.write(text)

Python scripts
Control

76

f.close()

print "\n\nThe configuration file is ready to be saved."

print "\n\nDo you want to check before to save [y/n]? ",

confermi = raw_input()

if confermi == 'y':

 for line in open("config.temp",'r').readlines():

 print line,

if branch == '1':

 print "\n\nDo you want to save as fpga1.conf [y/n]? ",

 confermi = raw_input()

 if confermi == 'y':

 os.system("mv config.temp fpga1.conf")

 else:

 print "\n\nSave aborted. You can still find these settings in the

temporary file config.temp\n"

if branch == '2':

 print "\n\nDo you want to save as fpga2.conf [y/n]? ",

 confermi = raw_input()

 if confermi == 'y':

 os.system("mv config.temp fpga2.conf")

 else:

 print "\n\nSave aborted. You can still find these settings in the

temporary file config.temp\n"

if branch == '3':

 print "\n\nDo you want to save as fpga3.conf [y/n]? ",

 confermi = raw_input()

 if confermi == 'y':

 os.system("mv config.temp fpga3.conf")

 else:

 print "\n\nSave aborted. You can still find these settings in the

temporary file config.temp\n"

if branch == '4':

 print "\n\nDo you want to save as fpga4.conf [y/n]? ",

 confermi = raw_input()

 if confermi == 'y':

 os.system("mv config.temp fpga4.conf")

 else:

 print "\n\nSave aborted. You can still find these settings in the

temporary file config.temp\n"

sdeb_init.py

#! /usr/bin/env python

"""

Script for initialising Space Debris beamformer.

eg usage: ./sdeb_init.py l configfile.conf

"""

#STD imports

import sys, os, time, math

from socket import *

#Project imports

#import lofarconf

import pack_sdeb_pars_conf

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

77

import dataconversion

import pack_sdeb_pars_systems

def get_write_func(addr, port):

 def write_func(line):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.connect((addr, int(port)))

 sock.send(line + "\n")

 res = sock.recv(1024)

 sock.close()

 return res.strip()

 return write_func

def write_addr(val, addr, client):

 client("write_int addr %i"%(addr,))

 #time.sleep(0.5)

 client("write_int data %i"%(val,))

 #time.sleep(0.5)

 client("write_int cmd 1")

 #time.sleep(0.5)

 client("write_int cmd 0")

 #time.sleep(0.5)

def equalize(fpga, dec_factor, bee_dec_factor, integration, client, logger):

 conv = dataconversion.get_conversion_t(8, 7, True)

 ibob_offset = 2 ** 16

 fpga_offset = 2 ** 24

 for i,e in enumerate(fpga['equalization']):

 if not e is None:

 re = dataconversion.real2unsigned(math.cos(math.radians(e)), conv)

 im = dataconversion.real2unsigned(math.sin(math.radians(e)), conv)

 else:

 re = 0

 im = 0

 logger.info("Setting (RE_%i, IM_%i) to: (%i, %i)"%(i, i, re, im))

 if 0 <= i <= 3:

 offset = 0

 elif 4 <= i <= 7:

 offset = ibob_offset

 elif 8 <= i <= 11:

 offset = fpga_offset

 elif 12 <= i <= 15:

 offset = fpga_offset + ibob_offset

 write_addr(re, 2*(i%4) + offset, client)

 write_addr(im, 2*(i%4) + 1 + offset, client)

 logger.info("Setting decimation factor to %i"%(dec_factor,))

 write_addr(dec_factor, 8, client)

 time.sleep(0.2)

 write_addr(dec_factor, 8 + fpga_offset, client)

 time.sleep(0.2)

 write_addr(dec_factor, 8 + ibob_offset, client)

 time.sleep(0.2)

 write_addr(dec_factor, 8 + ibob_offset + fpga_offset, client)

 time.sleep(0.2)

 write_addr(bee_dec_factor, 10, client)

 time.sleep(0.2)

 write_addr(bee_dec_factor, 10 + fpga_offset, client)

 time.sleep(0.2)

Python scripts
Control

78

 write_addr(integration, 9, client)

 time.sleep(0.2)

 write_addr(integration, 9 + fpga_offset, client)

 time.sleep(0.2)

def log_params(logger, client):

 ld0 = int(client("read_int rx_ld_cnt0"))

 dv0 = int(client("read_int rx_cnt0"))

 pck = int(client("read_int pck_cnt"))

 msg = " ".join([str(ld0), str(dv0), str(pck)])

 logger.info(msg)

if __name__ == '__main__':

 from optparse import OptionParser

 import datetime

 import os

 import logging

 import logging.handlers

 p = OptionParser()

 p.set_usage('sdeb_init.py [options] CONFIG_FILE')

 p.set_description(__doc__)

 p.add_option('-r', '--master_reset', dest='reset', action='store_false',

default=True,

 help='If set does not send a Master Reset signal before init')

 p.add_option('-e', dest='eq', action='store_false', default=True,

 help='If set skips the equalization process')

 p.add_option('-s', '--start_time', dest='start_time', default='now',

 help='set the start time as dd_mm_YYYY_HH:MM:SS')

 p.add_option('-l', dest='log', action='store_true', default=False,

 help='log data to file')

 ########### PARSING OPTIONS #######################

 opts, args = p.parse_args(sys.argv[1:])

 if args==[]:

 print 'Please specify a configuration file! \nExiting.\n'

 exit()

 start_time = opts.start_time

 if start_time == "now":

 start_time = datetime.datetime.now()

 else:

 start_time = datetime.datetime.strptime(start_time, "%d_%m_%Y_%H:%M:%S")

 log = opts.log

 start_cam = datetime.timedelta(seconds=10)

 start_delta = datetime.timedelta(seconds=1)

 #Init logging

 if log:

 if not os.path.exists("log"):

 os.makedirs("log")

 logfile = os.path.join("log", "sdeb_init.log")

 if os.path.exists(logfile):

 os.remove(logfile)

 logger = logging.getLogger("sdeb_logger")

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

79

 logger.setLevel(logging.DEBUG)

 ch = logging.StreamHandler()

 ch.setLevel(logging.DEBUG)

 ch_formatter = logging.Formatter("%(asctime)s - %(message)s")

 ch.setFormatter(ch_formatter)

 fh = logging.handlers.RotatingFileHandler(logfile, maxBytes=10485760,

backupCount=5)

 fh.setLevel(logging.DEBUG)

 fh_formatter = logging.Formatter("%(asctime)s - %(levelname)s -

%(message)s")

 fh.setFormatter(fh_formatter)

 logger.addHandler(ch)

 logger.addHandler(fh)

 ########### PARSING CONFIGURATION FILE ################

 if log:

logger.info("***")

 logger.info("**************** INITIALIZATION PROCESS

*******************")

logger.info("***")

 logger.info("parsing configuration file " + args[0])

 conf = pack_sdeb_pars_conf.parse_settings(args[0])

 fpga = conf['main_fpga']

 client = get_write_func(fpga['server']['addr'], fpga['server']['port'])

 ########## INIT SYSTEM #########

 if log:

 logger.info("Initializing the Space Debris system")

 if opts.reset:

 if log:

 logger.info("Sending Master Reset to Bee2 and IBOBs")

 client("write_int mrst 0")

 time.sleep(0.1)

 client("write_int mrst 1")

 time.sleep(0.1)

 client("write_int mrst 0")

 time.sleep(0.1)

 if opts.eq:

 if log:

 logger.info("Setting equalization on main fpga")

 equalize(fpga, conf['dec_factor'], conf['bee_dec_factor'],

conf['integration'], client, logger)

 client("write_int cmd 0")

 if conf['data_format'] == 0:

 logger.info("Setting Data Format to 16.12")

 else:

 logger.info("Setting Data Format to 16.11")

 client("write_int data_format "+str(conf['data_format']))

 time.sleep(0.1)

 logger.info("Setting Packet Length to "+str(conf['pck_length']))

 client("write_int pck_length "+str(conf['pck_length']))

 time.sleep(0.1)

 ipconv = str(int((conf['monitor_ip'] & 255*256*256*256) >> 24))

Python scripts
Control

80

 ipconv += "."+str(int((conf['monitor_ip'] & 255*256*256) >> 16))

 ipconv += "."+str(int((conf['monitor_ip'] & 255*256) >> 8))

 ipconv += "."+str(int(conf['monitor_ip'] & 255))

 logger.info("Setting Monitor IP to "+ipconv+" ("+str(conf['monitor_ip'])+")")

 client("write_int monitor_ip "+str(conf['monitor_ip']))

 time.sleep(0.1)

 logger.info("Setting Monitor Port to "+str(conf['monitor_port']))

 client("write_int monitor_port "+str(conf['monitor_port']))

 time.sleep(0.1)

 ipconv = str(int((conf['storage_ip'] & 255*256*256*256) >> 24))

 ipconv += "."+str(int((conf['storage_ip'] & 255*256*256) >> 16))

 ipconv += "."+str(int((conf['storage_ip'] & 255*256) >> 8))

 ipconv += "."+str(int(conf['storage_ip'] & 255))

 logger.info("Setting Storage IP to "+ipconv+" ("+str(conf['storage_ip'])+")")

 client("write_int storage_ip "+str(conf['storage_ip']))

 time.sleep(0.1)

 logger.info("Setting Storage Port to "+str(conf['storage_port']))

 client("write_int storage_port "+str(conf['storage_port']))

 time.sleep(0.1)

 logger.info("Starting 10GbE interface: "+str(conf['gbe1_name']))

 client("start_gbe "+str(conf['gbe1_filename'])+" "+str(conf['gbe1_name']))

 logger.info("Starting 10GbE interface: "+str(conf['gbe2_name']))

 client("start_gbe "+str(conf['gbe2_filename'])+" "+str(conf['gbe2_name']))

 ######## TIME UPDATE ##########

 logger.info("Performing time update for sync...")

 while datetime.datetime.now().microsecond > 100000:

 time.sleep(0.1)

 t_now=datetime.datetime.utcnow()

 t_zero = datetime.datetime.strptime("1/1/1970 00:00:00","%d/%m/%Y %H:%M:%S")

 t_delta = t_now - t_zero

 t_stamp_now = t_delta.days*(60*60*24) + t_delta.seconds

 logger.info("Sending: "+datetime.datetime.strftime(t_now, "%Y/%m/%d

%H:%M:%S")+" UT (timestamp: "+str(t_stamp_now)+")")

 client("write_int time_update "+str(t_stamp_now))

 time.sleep(0.1)

 while datetime.datetime.now().microsecond > 100000:

 time.sleep(0.1)

 client("write_int cmd 4") # cmd Read Ibob Localtime (UT)

 time.sleep(0.1)

 client("write_int cmd 0")

 iboblocaltime = int(client("read_int last_rx_hidata"))

 logger.info("Received:

"+datetime.datetime.strftime(datetime.datetime.utcfromtimestamp(iboblocaltime),

"%Y/%m/%d %H:%M:%S")+" UT (timestamp: "+str(iboblocaltime)+")")

 if iboblocaltime == (t_stamp_now+1):

 logger.info("Time updated successfully")

 else:

 logger.info("ERROR: Time NOT updated!!!")

 #logger.info("logging order:")

 #logger.info("ld0 dv0 pck_cnt")

 #ld0 = int(client("read_int rx_ld_cnt0"))

 #dv0 = int(client("read_int rx_cnt0"))

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

81

 #pck = int(client("read_int pck_cnt"))

 #msg = " ".join([str(ld0), str(dv0), str(pck)])

 #logger.info(msg)

 print "\nInitialization Process Successfully Completed!\n"

sched/3C123_fpga1.conf

[Obs]

System = fpga1

Start_time = 2012/11/01_00:50:00

Stop_time = 2012/11/01_01:30:00

Target = 3C123_1RX

sdeb_run.py

#! /usr/bin/env python

"""

Script to load the observation parameters.

eg usage: ./sdeb_run.py -l observable.conf

"""

#STD imports

import sys, os, time, math

from socket import *

#Project imports

import pack_sdeb_pars_obs

import dataconversion

import pack_sdeb_pars_systems

def get_write_func(addr, port):

 def write_func(line):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.connect((addr, int(port)))

 sock.send(line + "\n")

 res = sock.recv(1024)

 sock.close()

 return res.strip()

 return write_func

if __name__ == '__main__':

 from optparse import OptionParser

 import datetime

 import os

 import logging

 import logging.handlers

 p = OptionParser()

 p.set_usage('sdeb_run.py [options] CONFIG_FILE')

 p.set_description(__doc__)

 p.add_option('-l', dest='log', action='store_true', default=False,

Python scripts
Control

82

 help='log data to file')

 ########### PARSING OPTIONS #######################

 opts, args = p.parse_args(sys.argv[1:])

 log = opts.log

 if args==[]:

 print 'Please specify a configuration file! \nExiting.\n'

 exit()

 #Init logging

 if log:

 if not os.path.exists("log"):

 os.makedirs("log")

 logfile = os.path.join("log", "sdeb_run.log")

 if os.path.exists(logfile):

 os.remove(logfile)

 logger = logging.getLogger("sdeb_logger")

 logger.setLevel(logging.DEBUG)

 ch = logging.StreamHandler()

 ch.setLevel(logging.DEBUG)

 ch_formatter = logging.Formatter("%(asctime)s - %(message)s")

 ch.setFormatter(ch_formatter)

 fh = logging.handlers.RotatingFileHandler(logfile, maxBytes=10485760,

backupCount=5)

 fh.setLevel(logging.DEBUG)

 fh_formatter = logging.Formatter("%(asctime)s - %(levelname)s -

%(message)s")

 fh.setFormatter(fh_formatter)

 logger.addHandler(ch)

 logger.addHandler(fh)

 ########### PARSING CONFIGURATION FILE ################

 if log:

logger.info("***")

 logger.info("****************** ARM A NEW OBSERVETION

******************")

logger.info("***")

 logger.info("Parsing configuration file " + args[0])

 conf = pack_sdeb_pars_obs.parse_settings(args[0])

 sysconf =

pack_sdeb_pars_systems.parse_settings("systems.conf",conf['System'])

 #client = get_write_func(conf['ip_addr'], conf['ip_port'])

 #beesys = sysconf['server']

 client = get_write_func(sysconf['server']['addr'], sysconf['server']['port'])

 if log:

 logger.info("Loading observation parameters...")

 t_start =

datetime.datetime.strptime(conf['Start_time'],"%Y/%m/%d_%H:%M:%S")

 t_stop =

datetime.datetime.strptime(conf['Stop_time'],"%Y/%m/%d_%H:%M:%S")

 target_name = conf['Target']

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

83

 t_nok = 0

 if t_start < datetime.datetime.utcnow():

 t_nok = 1

 logger.info("*** ERROR: Start time "+datetime.datetime.strftime(t_start,

"%Y/%m/%d %H:%M:%S")+" UT must be greater ")

 logger.info("*** than now

("+datetime.datetime.strftime(datetime.datetime.utcnow(), "%Y/%m/%d %H:%M:%S")+"

UT)")

 if t_nok == 0 and t_stop < datetime.datetime.utcnow():

 t_nok = 1

 logger.info("*** ERROR: Stop time "+datetime.datetime.strftime(t_stop,

"%Y/%m/%d %H:%M:%S")+" UT must be greater")

 logger.info("*** than now

("+datetime.datetime.strftime(datetime.datetime.utcnow(), "%Y/%m/%d %H:%M:%S")+"

UT)")

 if t_nok == 0 and t_stop < t_start:

 t_nok = 1

 logger.info("*** ERROR: Stop time "+datetime.datetime.strftime(t_stop,

"%Y/%m/%d %H:%M:%S")+" UT must be greater ")

 logger.info("*** than Start time "+datetime.datetime.strftime(t_start,

"%Y/%m/%d %H:%M:%S")+" UT")

 if not t_nok:

 t_zero = datetime.datetime.strptime("1/1/1970 00:00:00","%d/%m/%Y

%H:%M:%S")

 d_start = t_start - t_zero

 start = d_start.days*(60*60*24) + d_start.seconds

 d_stop = t_stop - t_zero

 stop = d_stop.days*(60*60*24) + d_stop.seconds

 t_total = d_stop - d_start

 t_totsec = t_total.days*(60*60*24) + t_total.seconds

 client("write_int start_time "+str(start))

 logger.info("Loaded START time

"+datetime.datetime.strftime(datetime.datetime.utcfromtimestamp(start), "%Y/%m/%d

%H:%M:%S")+" UT (timestamp: "+str(start)+")")

 client("write_int stop_time "+str(stop))

 logger.info("Loaded STOP time

"+datetime.datetime.strftime(datetime.datetime.utcfromtimestamp(stop), "%Y/%m/%d

%H:%M:%S")+" UT (timestamp: "+str(stop)+")")

 # ARMING IBOB

 client("write_int cmd 0")

 time.sleep(0.1)

 client("write_int cmd 2")

 time.sleep(0.1)

 client("write_int cmd 0")

 time.sleep(0.1)

 while (int(client("read_int last_rx_lodata")) == 0) and

(int(client("read_int last_rx_oob")) == 2):

 client("write_int cmd 0")

 time.sleep(0.1)

 client("write_int cmd 2")

 time.sleep(0.1)

 client("write_int cmd 0")

Python scripts
Control

84

 logger.info("System "+conf['System']+" armed!")

 #d_volume = int(int(client("read_int integration")) * t_totsec * 4)

 d_volume = int(30000000./299 * t_totsec * 4)

 unit = ['bytes', 'KB', 'MB', 'GB']

 n_unit = 0

 d_volume /= ((int(client("read_int pck_length"))-1) * 8)

 d_volume = int(((int(client("read_int pck_length"))-1) * 8)*d_volume)

 volume=d_volume

 while n_unit <= 3 and volume > 1024:

 volume /= 1024

 n_unit += 1

 logger.info("Data expected: about "+str(int(volume))+" "+unit[n_unit]+"

("+str(d_volume)+" bytes)")

 logger.info("Starting Recording data on

192.167.189.66:"+str(int(sysconf['server']['port'])+4))

 storage_client = get_write_func("192.167.189.66",

str(int(sysconf['server']['port'])+4))

 storage_client("record "+str(start)+" "+target_name+" "+str(stop)+"

"+str(d_volume))

 logger.info("Observation \""+target_name+"\" Loaded Successfully!\n")

 else:

 logger.info("Observation \""+target_name+"\" not loaded!!!")

 logger.info("ARM aborted!\n")

last_calib_ew.conf

data = 14/11/2012 00:00:00

source = 3C123

d0 = +154.70863 # 4E

d1 = -1.2245701 # 5E

d2 = +00.0 # 2E

d3 = +55.895791 # 3E

d4 = none #

d5 = none #

d6 = none #

d7 = none #

d8 = none #

d9 = none #

d10 = none #

d11 = none #

d12 = none #

d13 = none #

d14 = none #

d15 = none #

systems.conf

[Systems]

fpga1 = beecool:61001

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

85

fpga2 = beecool:62001

fpga3 = beecool:63001

fpga4 = beecool:64001

fpga1.conf

Configuration file automatically generated by using

the Wizard on 15/11/2012 15:09:48 UT

NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS!

design global parameters

[global]

dec_factor = 13

bee_dec_factor = 23

integration for on board data accumulation

integration = 100334

Common network parameters

monitor_ip = 3232238346

storage_ip = 3232238347

pck_length = 160

gbe1_name = monitor

gbe2_name = storage

Parameters for the FPGA1 system

monitor_port = 61003

storage_port = 61004

gbe1_filename = gbe_fpga1_monitor.conf

gbe2_filename = gbe_fpga1_storage.conf

Data cast 16.11

data_format = 1

[main_fpga]

server = beecool:61001

#Phase shift in degrees for each single antenna

#none: mute antenna

d0 = none # 4E

d1 = none # 5E

d2 = +00.0 # 2E

d3 = +55.895791 # 3E

d4 = none #

d5 = none #

d6 = none #

d7 = none #

d8 = none #

d9 = none #

d10 = none #

d11 = none #

d12 = none #

d13 = none #

d14 = none #

d15 = none #

Python scripts
Storage

86

Storage

README.txt

1. First of all connect via ssh or open a terminal window

 on 192.167.189.66 (batman), login as oper

 * Last login: Sat Nov 10 14:03:31 2012 from bee2desktop

 * Have a lot of fun...

2. Storage scripts are in "/media/data/sdeb"

 * oper@batman:~> cd /media/data/sdeb

3. Depending on the branch launch 'fpga1/2/3/4’ recorder server

 * oper@batman:/media/data/sdeb> ./fpga1_recorder_server.py

 * server listening on port: 64005

4. Server is listening, when observing you should see this:

 * Command received: record 1352725860 scan_hp 1352725920 24080232

 *

 * ###

 *

 * Executing: ./record_fpga1.py -o scan_hp -s 2012/11/12_13:11:00 -t

2012/11/12_13:12:00 -e 24080232

 *

 * ###

 *

 * 317_14:10:28 - INFO: Running with options:

 * 317_14:10:28 - INFO: port: 64004

 * 317_14:10:28 - INFO: pkg length: 8000

 * 317_14:10:28 - INFO: fmt: >Q

 * 317_14:10:28 - INFO: target name: scan_hp

 * 317_14:10:28 - INFO: start time: 2012/11/12_13:11:00

 * 317_14:10:28 - INFO: stop time: 2012/11/12_13:12:00

 * 317_14:10:28 - INFO: output filename: data/20121112_131100_EW_scan_hp.dat

 * 317_14:10:59 - INFO: server listening

 * 317_14:11:00 - INFO: recording...

 * 317_14:12:00 - INFO: closing communication

 * 317_14:12:00 - INFO: received up to package: 18931

 * 317_14:12:00 - INFO: closing recorder

 *

 * ###

fpga1_recorder_server.py

#!/usr/bin/env python

import SocketServer

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

87

import socket

import struct

import datetime

import time

import logging

import logging.handlers

import os

class CommandException(Exception):

 def __init__(self, msg):

 Exception.__init__(self, msg)

class SdebTCPHandler(SocketServer.StreamRequestHandler):

 def handle(self):

 self.data = self.rfile.readline().strip()

 print "Command received: " + self.data

 args = self.data.split()

 try:

 res = self.server.execute(args)

 self.wfile.write(str(res))

 except CommandException, ce:

 self.wfile.write(ce.args[0])

class SdebTCPServer(SocketServer.TCPServer):

 def __init__(self, addr):

 SocketServer.TCPServer.__init__(self, addr, SdebTCPHandler)

 self.rec = 0

 #self.base_path = "/proc/%s/hw/ioreg/"%(pid,)

 #self.devs = os.listdir(self.base_path)

 self.commands = {

 "record": self.record,

 "abort": self.abort,

 }

 def record(self, t_start, target, t_stop, expsize):

 self.rec = 1

 print "\n###\n"

 cmd = "./record_fpga1.py -o "+target+" -s

"+datetime.datetime.strftime(datetime.datetime.utcfromtimestamp(int(t_start)),

"%Y/%m/%d_%H:%M:%S")+" -t

"+datetime.datetime.strftime(datetime.datetime.utcfromtimestamp(int(t_stop)),

"%Y/%m/%d_%H:%M:%S")

 cmd += " -e "

 cmd += expsize

 print "Executing: "+cmd

 #a = os.system(cmd+"&")

 os.system(cmd+"&")

 #os.system(cmd)

 print "\n###\n"

 #return a

 def abort(self, target):

 print "End of recording: "+target

 self.rec = 0

 return 0

 def execute(self, args):

 if not self.commands.has_key(args[0]):

 raise CommandException("Command %s not found."%(args[0],))

Python scripts
Storage

88

 if len(args) > 1:

 try:

 res = self.commands[args[0]](*(args[1:]))

 except TypeError, te:

 raise CommandException(te.args[0])

 else:

 res = self.commands[args[0]]()

 return res

if __name__=="__main__":

 from optparse import OptionParser

 import sys

 #server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 server = SdebTCPServer(("", 61005))

 try:

 print "server listening on port: " + str(61005)

 server.serve_forever()

 except KeyboardInterrupt:

 print "closing communication"

 del(server)

 sys.exit(0)

record_fpga1.py

#!/usr/bin/env python

import SocketServer

import socket

import struct

import datetime

import time

import logging

import logging.handlers

#Setting up logging

log_filename = "log/dataserver.log"

logger = logging.getLogger('DataLogger')

logger.setLevel(logging.INFO)

console_log = logging.StreamHandler()

file_log = logging.handlers.RotatingFileHandler(log_filename, maxBytes=8388608,

backupCount=5)

formatter = logging.Formatter("%(asctime)s - %(levelname)s: %(message)s",

"%j_%H:%M:%S")

console_log.setFormatter(formatter)

file_log.setFormatter(formatter)

logger.addHandler(console_log)

logger.addHandler(file_log)

def unscram_data(data, l):

 data_len = len(data)

 for i in xrange(data_len // l):

 yield data[i*l:i*l+l]

class LofarDataUDPHandler(SocketServer.DatagramRequestHandler):

 def handle(self):

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

89

 while server.acquiring:

 buf = self.rfile.read(self.server.pkg_len)

 self.handle_pkg(buf)

 def handle_pkg(self, pkg):

 count = struct.unpack(self.server.fmt, pkg[:8])[0]

 if count != self.server.count + 1:

 logger.error("jumping from packet " + str(self.server.count) + " to "

+ str(count))

 self.server.count = count

 self.server.outfile.write(pkg[8:])

class LofarDataUDPServer(SocketServer.UDPServer):

 def __init__(self, addr=("localhost", 9999), fmt=">L",

outfilename="data/lofar.dat", pkg_len=20):

 self.outfile = open(outfilename, "wb")

 self.fmt = fmt

 self.pkg_len = pkg_len

 self.count = 0

 self.acquiring = True

 SocketServer.UDPServer.__init__(self, addr, LofarDataUDPHandler)

if __name__=="__main__":

 from optparse import OptionParser

 import sys

 #command line parsing

 op = OptionParser()

 op.add_option("-p", "--port", type="int", dest="port", default=61004)

 op.add_option("-f", "--fmt", dest="fmt", default=">Q")

 op.add_option("-o", "--outfile", dest="outfile", default="", help="target

name")

 op.add_option("-e", "--expsize", type="int", dest="expsize", default=0,

help="expected size in bytes")

 op.add_option("-k", "--pkg_len", type="int", dest="pkg_len", default=1000,

help="gets multiplied by 8")

 op.add_option("-s", "--start_time", dest="start", default="now",

help="YYYY/MM/DD_HH:MM:SS")

 op.add_option("-t", "--stop_time", dest="stop", default="never",

help="YYYY/MM/DD_HH:MM:SS")

 op.add_option("-n", "--no_record", dest="no_rec", action="store_true",

default=False, help="don\'t write data to disk")

 opts, args = op.parse_args(sys.argv[1:])

 port = opts.port

 fmt = opts.fmt

 pkg_len = opts.pkg_len * 8

 start = opts.start

 stop = opts.stop

 rec = not opts.no_rec

 expectedsize = opts.expsize

 outfile = opts.outfile

 #file_log.doRollover()

 logger.info("Running with options:")

 logger.info("port: " + str(port))

 logger.info("pkg length: " + str(pkg_len))

 logger.info("fmt: " + str(fmt))

 logger.info("target name: " + outfile)

Python scripts
Storage

90

 logger.info("start time: " + start)

 logger.info("stop time: " + stop)

 #logger.info("recording: " + str(rec))

 if outfile != "":

 outfile = "_" + outfile

 t_zero = datetime.datetime.strptime("1/1/1970 00:00:00","%d/%m/%Y %H:%M:%S")

 if start == "now":

 start_time = datetime.datetime.utcnow()

 else:

 start_time = datetime.datetime.strptime(start, "%Y/%m/%d_%H:%M:%S")

 d_start = start_time - t_zero

 lstart = datetime.datetime.utcfromtimestamp(d_start.days*(60*60*24) +

d_start.seconds -1)

 if stop == "never":

 delta = datetime.timedelta(days=365)

 stop_time = start_time + delta

 else:

 stop_time = datetime.datetime.strptime(stop, "%Y/%m/%d_%H:%M:%S")

 d_stop = stop_time - t_zero

 lstop = datetime.datetime.utcfromtimestamp(d_stop.days*(60*60*24) +

d_stop.seconds +1)

 #logger.info("start time converted to: " + str(start))

 #logger.info("stop time converted to: " + str(stop))

 #server = LofarDataUDPServer(addr=("", port), outfilename=outfile, fmt=fmt,

pkg_len=pkg_len)

 server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 if rec:

outfilename="data/"+start_time.strftime("%Y%m%d_%H%M%S")+"_NS"+outfile+".dat"

 logger.info("output filename: "+ outfilename)

 out = open(outfilename, "wb")

 count = -1

 while datetime.datetime.utcnow() < lstart:

 time.sleep(0.3)

 logger.info("server listening")

 server.bind(("192.168.11.11", port))

 while lstop > datetime.datetime.utcnow() and out.tell() < expectedsize:

 #print expectedsize, out.tell(),

 #if out.tell() < expectedsize:

 #print "...rileggo"

 buf = server.recv(pkg_len)

 new_count = struct.unpack(fmt, buf[:8])[0]

 if not new_count == count + 1:

 logger.error("jumping from " + str(count) + " to " + str(new_count))

 if new_count == 0:

 logger.info("recording...")

 count = new_count

 out.write(buf[8:])

 out.flush()

 logger.info("closing communication")

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

91

 logger.info("received up to package: " + str(count+1))

 out.close()

 logger.info("closing recorder")

 print "\n###\n"

Monitor

README.txt

Plot observation in realtime

Example of usage:

oper@bee2:~/andrea/bin$ python realtimespectra.py -c 1024 -i 100 -p 61003

Help for parameters allowed:

oper@bee2:~/andrea/bin$ python realtimespectra.py --help

Usage: realtimespectra.py [options]

Options:

 -h, --help show this help message and exit

 -p PORT, --port=PORT

 -k PKG_LEN, --pkg_len=PKG_LEN

 package length expressed in 64b

 -c FFTSIZE, --fftsize=FFTSIZE

 number of fft channels

 -i INTEGR, --intgr_time=INTEGR

 number of integrations

 -w WINDOW, --window=WINDOW

 type of window, default=no window, possible value:

 hamming, hanning, bartlett, kaiser(default shape 10%)

realtimespectra.py

#!/usr/bin/env python

ensure sysctl -w net.core.rmem_max=8388608 is set

import socket

import struct

import datetime

import time

import numpy,sys

import matplotlib

matplotlib.use('TkAgg')

from matplotlib import pylab

cnt = 0

def exit_fail():

 print 'ERROR: '

 try:

 print 'Programma terminato'

Python scripts
Monitor

92

 except: pass

 raise

 exit()

def exit_clean():

 try:

 print 'Programma terminato'

 except: pass

 exit()

def safe_recv(socket, size):

 global cnt

 msg = ''

 while len(msg) < (size):

 chunk = socket.recv(size-len(msg)+8);

 if chunk == '':

 raise RuntimeError, "socket connection broken"

 msg = msg + chunk[8:]

 return msg

def cplxswaporder(n):

 a = numpy.zeros(len(n)/2,'complex')

 i = 0

 q = 0

 while q < len(n):

 #a[i]=complex(n[q+2],n[q+3])

 #a[i+1]=complex(n[q],n[q+1])

 a[i]=complex(n[q],n[q+1])

 a[i+1]=complex(n[q+2],n[q+3])

 i = i+2

 q = q+4

 return a

def applywindow(data,window):

 if window == 'hamming':

 data *= numpy.hamming(len(data))

 elif window == 'hanning':

 data *= numpy.hanning(len(data))

 elif window == 'bartlett':

 data *= numpy.bartlett(len(data))

 elif window == 'kaiser':

 data *= numpy.kaiser(len(data),len(data)/10)

 return data

Read header (64bit) and

the first 1024 pair re-im

of samples (blocking, re 16b, im 16b)

def get_spectrum(socket,pkg_len,fftsize):

 #rawdatareal = numpy.zeros(fftsize,dtype=numpy.float64)

 buf = safe_recv(socket,fftsize*4)

 fmt='<'+str(fftsize*2)+'h'

 vettore = struct.unpack(fmt, buf)

 rawdata = cplxswaporder(vettore)

 if window != '':

 rawdata = applywindow(rawdata,window)

 fftdata = numpy.fft.fft(rawdata)

 #rawdatareal = numpy.array([c.real ** 2 + c.imag ** 2 for c in rawdata])

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

93

 #fftdata = numpy.fft.fft(rawdatareal)

 fftdata = numpy.array([c.real ** 2 + c.imag ** 2 for c in fftdata])

 #fftdata = numpy.fft.helper.fftshift(fftdata) #Frequency reordering, funziona

anche con fft complesse?!

 #fftdata = 10*numpy.log10(fftdata)

 return fftdata

if __name__=="__main__":

 from optparse import OptionParser

 import sys

 #command line parsing

 op = OptionParser()

 op.add_option("-p", "--port", type="int", dest="port", default=64003)

 #op.add_option("-f", "--fmt", dest="fmt", default="<Q")

 op.add_option("-k", "--pkg_len", type="int", dest="pkg_len", default=20,

help="package length expressed in 64b")

 op.add_option("-c", "--fftsize", type="int", dest="fftsize", default=1024,

help="number of fft channels")

 op.add_option("-i", "--intgr_time", type="int", dest="integr", default=100,

help="number of integrations")

 op.add_option("-w", "--window", dest="window", default='', help="type of

window, default=no window, possible value: hamming, hanning, bartlett,

kaiser(default shape 10%)")

 #op.add_option("-t", "--stop_time", dest="stop", default="never",

help="HH:MM:SS_dd/mm/yyyy")

 opts, args = op.parse_args(sys.argv[1:])

 instrument_port = opts.port

fmt = opts.fmt

 pkg_len = opts.pkg_len*8

 fftsize = opts.fftsize

 integration = opts.integr

 window = opts.window

try:

 pylab.ion()

 #UDP Socket stuff

 instrument_addr = '192.168.11.10'; #'127.0.0.1'

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM);

 s.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 1048576*8)

 print 'Listening on port ',instrument_port, ' (',instrument_addr,')'

 s.bind((instrument_addr, instrument_port));

 try:

 print 'Plot started'

 pylab.figure()

 if instrument_port == 64003:

 rtelescope = 'EW'

 if instrument_port == 61003:

 rtelescope = 'NS'

 while 1:

 #continuous_acq()

 i=0

Python scripts
Monitor

94

 spettri = numpy.zeros(fftsize,dtype=numpy.float64)

 while i < integration:

 spettro = get_spectrum(s,pkg_len,fftsize)

 spettri += spettro

 i += 1

 matplotlib.pyplot.clf()

 intspettro =

numpy.concatenate((spettri[fftsize/2:],spettri[:fftsize/2]))

 pylab.semilogy(intspettro)

 pylab.title(rtelescope+' - FFT (integration of '+str(i)+ ' spectra)

'+time.strftime('%d/%m/%Y %X'))

 pylab.ylabel('Power (arbitrary units)')

 pylab.grid()

 pylab.xlabel('Channel')

 pylab.xlim(0,len(intspettro))

 pylab.draw()

 except:

 print '\n'

except KeyboardInterrupt:

 exit_clean()

except:

 exit_fail()

exit_clean()

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

95

Index of Figures

FIG. 1: BISTATIC RADAR CONFIGURATION GEOMETRY. 6

FIG. 2: BLOCK DIAGRAM OF THE IBOB BOARD GENERAL ARCHITECTURE 9

FIG. 3: THE IBOB BOARD, YOU CAN SEE ON THE TOP THE 2 ZDOKS FOR A/D BOARDS, TWO CX4 CONNECTORS BELOW,

JTAG PINS ON THE LEFT, WHILE THE XILINX VIRTEX 2 PRO IS BEHIND THE COOLER 10

FIG. 4: CASPER IADC 10

FIG. 5: A PICTURE OF THE BEE2 BOARD WHOSE PRINCIPAL COMPONENTS ARE POINTED OUT. 11

FIG. 6: BLOCK DIAGRAM OF THE BEE2 BOARD GENERAL ARCHITECTURE 13

FIG. 7: DATA FLOW SCHEME 13

FIG. 8: FUJITSU XG700 12CX4 PORTS 10GB SWITCH 14

FIG. 9: OVERALL SCHEME 15

FIG. 10: BASIC CONNECTION SCHEME 15

FIG. 11: 4 PARALLEL BEAMFORMER SYSTEM CONNECTION SCHEME 16

FIG. 12: PICTURE OF THE LOCAL OSCILLATOR SET TO 378MHZ IN INPUT TO 17

FIG. 13: PICTURE OF THE MAIN BEAMFORMER DIGITAL BACKEND MODULES 17

FIG. 14: MATLAB SIMULINK SCREENSHOT OF THE IBOB PROJECT 18

FIG. 15: IBOB FIRMWARE ARCHITECTURE 19

FIG. 16: DDC SCHEMATIC 19

FIG. 17: DESIGN PARAMETERS OF THE FIR FILTER INSIDE THE DDC BLOCK. 20

FIG. 18: DESIGN PARAMETERS OF THE FIR FILTER SYNTHESIZED IN THE IBOB. 21

FIG. 19: TIME DIAGRAM OF THE TIME UPDATE PROCEDURE 23

FIG. 20: IBOB TIMING REGISTERS 24

FIG. 21: PROPAGATING THE SYNC SIGNAL WITH INTERMEDIATE BLOCK LATENCIES 24

FIG. 22: SIMULATION OF THE IBOB DECIMATOR PERFORMED USING SIMULINK. 25

FIG. 23: BEE2 MATLAB MODEL FILE 26

FIG. 24: BEE2 FIRMWARE ARCHITECTURE 26

FIG. 25: DESIGN PARAMETERS OF THE FIR FILTER SYNTHESIZED IN THE BEE2. 27

FIG. 26: IPS AN MACS TABLE 33

FIG. 27: STATE MACHINE FLOW CHART 36

FIG. 28: A REAL TIME FFT PLOT OBSERVING A DEBRIS IN A BISTATIC RADAR CONFIGURATION 46

FIG. 29: THE DOPPLER SHIFT OF THE DEBRIS ID 18096. ANIMATING THIS PLOT THE PEAK MOVES FROM RIGHT TO LEFT 47

FIG. 30: OMNIDIRECTIONAL ANTENNA 48

FIG. 31: HP 8657B 48

FIG. 32: ROHDE&SCHWARZ SMX 49

FIG. 33: THE MAIN WIDGET OF THE IDL SPECTROMETER 49

FIG. 34: OVERPLOTTING FFTS OF THE ENTIRE FILE YOU CAN RECOGNIZE THE FREQUENCIES USED FOR THE TEST. 51

file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855802
file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855803
file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855804

Index of Figures

96

FIG. 35: FREQUENCY 407.970KHZ SAMPLED USING THE HP 8657B AS CLOCK SAMPLER. THE READ FREQUENCY RESULTS

407.974KHZ, 4HZ DIFFERENCE 52

FIG. 36: FREQUENCY 407.970KHZ SAMPLED USING THE ROHDE&SCHWARZ SMX AS CLOCK SAMPLER. THE READ

FREQUENCY RESULTS EXACTLY 407.970KHZ 52

FIG. 37: FFT BINS 53

FIG. 38: NORMALIZED E-PLANE POWER PATTERNS CALCULATED FOR A SINGLE E-W RECEIVER (DOTTED BLACK LINE) AND FOR

A SYNTHETIZED BEAM OF 4 RECEIVERS (CONTINUOUS BLUE LINE). 57

FIG. 39: TRANSIT OF CYGNUS-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE) AND BY A SYNTHETIZED BEAM

OF 4 RECEIVERS (CONTINUOUS BLUE LINE). 58

FIG. 40: TRANSIT OF VIRGO-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE) AND BY A SYNTHETIZED BEAM OF

4 RECEIVERS (CONTINUOUS BLUE LINE). 58

FIG. 41: TRANSIT OF TAURUS-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE), BY A SYNTHETIZED BEAM OF 2

RECEIVERS (DASHED DOTTED RED LINE) AND OF 4 RECEIVERS (CONTINUOUS BLUE LINE) 59

FIG. 42: SPECTRUM OF THE ECHO FROM THE TARGET NEXTSAT DETECTED DURING ON 2012 DECEMBER 17 AT

09:01:06.25 UT. THE SPECTRAL WINDOW IS CENTRED AT THE TRANSMITTING FREQUENCY. DUE TO THE

EXTREMELY HIGH SNR OF THE ECHO, THE SIGNAL AMPLITUDE IS PLOTTED IN LOGARITHMIC SCALE. 60

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

97

Index of Tables

TAB. 1: STRUCTURE OF THE 64 BITS WORD TRANSMITTED OVER XAUI. ... 22

TAB. 2: UDP PACKET FORMAT .. 28

TAB. 3: DATA FIELD IN UDP PACKETS ... 29

TAB. 4: OOB LIST FOR IBOB-BEE2 INTERNAL COMMUNICATION PROTOCOL. .. 30

TAB. 5: 10GB ETH INTERFACE CONFIGURATIONS .. 32

TAB. 6: SERVICE ID LIST .. 32

TAB. 7: CHANNEL RESOLUTION AND TIME WINDOW OVER NUMBER OF CHANNELS .. 50

TAB. 8: DELTA FREQUENCIES OF THE TWO SIGNAL GENERATORS .. 55

TAB. 9: THE THREE RADIO-SOURCES OBSERVED FOR THE BEAMFORMER TEST. ... 56

Acronyms

98

Acronyms

ADC Analog to Digital Converter
CASPER Collaboration for Astronomy Signal Processing and Electronics Research
CW Continuous Wave
DDC Digital Down Converter
DDS Direct Digital Synthesizer
EDK Embedded Development Kit
E/W East West arm of the Northern Cross radiotelescope
FFT Fast Fourier Transform
FIR Finite Input Response
FPGA Field Programmable Gate Array
IDE Integrated Development Environment
IDL Interactive Data Language
IF Intermediate Frequency
IP Internet Protocol
LEO Low Earth Orbit
LOFAR Low Frequency Array
MAC Media Access Control
MSB Most Significant Bit
N/S North South arm of the Northern Cross radiotelescope
PFB Poliphase Filter Bank
PLL Phase Locked Loop
RF Radio Frequency
ROACH Reconfigurable Open Architecture Computing Hardware
SNR Signal to Noise Ratio
TLE Two Line Elements
USSTRATCOM United States Strategic Command

