TimeServerVlbi

A VLBI data stream real-time monitor

Matteo Stagni

March 25, 2015

IRA 485/15

Abstract

A couple of Python scripts that serve the purpose of monitoring VLBI data streams and
check their time coherence. The software has been developed to test and verify in real time
data streams coming from a dBBC backend using a Filal0G formatter without the need to
prepare a VLBI scheduled experiment.

Contents

1 Introduction 3
2 MARK5B 3
2.1 MARKS5B data format on the network 4
3 VDIF 5
3.1 VTP - VDIF transport protocol 6
4 timeServerClient 6
41 Usage . . . o i e 7
5 timeServerVlbi 7
5.1 Usage L 8
6 Conclusions 10

1 Introduction

Since the introduction of a new digital backend, the dBBC, in all Italian VLBI antennas facilities
there has been an acceleration towards new ways of dealing with VLBI data. The network
capabilities provided by the Filal0G formatter, an FPGA board capable of streaming UDP
data packets up to 4 Gbit/s has enabled remote recoding on COTS hardware and software, and
further pushes towards real-time correlation.

The pitfalls of dealing with this new formatter have spurred us to find a rapid way to
test the newly introduced capabilities such as the VDIF data format. Planned and unforeseen
maintenance time at the antennas have done the rest.

The overall program was thought as a ’surrogate’ of a real-time VLBI experiment which is
more time consuming to prepare and requires pointing a source at the antennas. This would
have been difficult to schedule and would have required extra work for operators. Instead a
timeServer VIbi instance can be run even when there is no actual observation in place, but only

the formatter is on sending out packets on the network.

2 MARKS5B

The Mark5B header format is the de-facto present standard when dealing with VLBI data. It
is supported by a number of recorders and correlators, though its dimension was not designed
with network capabilities in mind. Its biggest downside lays in its frame length, 10000 bytes
which cannot be supported by standard network appliances which are limited to Jumbo frames

up to a size of 9000 bytes.

Bit 31 Bit 0
Word 0 Sync word (TBD)
Word 1 User-specified (16 bits) ‘ T ‘ Frame# within second (starting at 0)
Word 2 VLBA BCD Time Code Word 1 (‘JJJSSSSS”)
Word 3 VLBA BCD Time Code Word 2 (*.SSSS’ plus 16-bit CRCC)

Figure 1: Disk Frame Header format [3]

Looking at the composition of the header we can find a useful sync word at the beginning
(ABADDEED,), followed by the frame number within second, which depends on the sampling
rate decided for the observation.

There is a sensitive bit that follows the frame number section in Figure 1 marked as T which
signals the presence of the Test Vector Generator, random noise produced by the formatter to
test the hardware. The presence of this bit has proved difficult to manage in recent times because
most correlators have been programmed to discard such data, whereas it is occasionally included
into the frame number section like when the sampling rate of the VLBI experiment rises over 2

Gbit/s.

The last two words of the Mark5B header are composed by a 4 bytes time code where the first
three numbers represent a shortened Modified Julian Date day (JJJ) and the last five numbers
the second of the day starting from 0 at midnight (5555S). The following word contains the
fractional part of the second (.559S)'and 2 bytes of CRCC (usually marked as zeros).

2.1 MARKS5B data format on the network

In order to transmit Mark5B data packets on a TCP/IP network in UDP mode, a Filal0G
board splits the 10000 bytes Mark5B frame into two 5008 UDP packets, preceded by a Packet
Serial Number (PSN). The serial number is identical for the two packets, though only the first
one contains the header. It is usually the task of the recorder program to discard single packets
or in case of a successful transmission, to join them together and write the reconstructed frame
to disk.

This design complicates the analysis of the header, in this case the sync word in the Mark5B

header helps to determine whether the packet contains a valid header or not.

Example: FiLa10G settings

MarkSB Mark5B data

header

—_—

Figure 2: Mark5B network data packets as produced by a Fila10G formatter board

"When using a Filal0G formatter, in anticipation of the VDIF design, the fractional part of the second is
absent, usually marked as zeros. It is thought to be sufficient to use the frame counter to determine the fractional
part of the second. This is not that case when the formatter is a Mark5B recorder, which fulfills the complete
standard and marks the fractional part of the second according to the connected PPS (Pulse Per Second) from

a Maser clock

Figure 3: A Filal0G (First - last) external board

3 VDIF
Bit 31 (MSB) Bit 0 (LSB)
Byte 3 Byte 2 Byte 1 Byte 0
Word0 | L | Ly Seconds from reference epoch;g
Word 1 assliJgr:l-edz Ref Epochg Data Frame # within secondy,
Word 2 V; log,(#chns)s Data Frame length (units of 8 bytes)y,
Word3 | C, ‘ bits/sample-15 Thread ID,, Station ID4
Word 4 EDV; | Extended User Data,,
Word 5 Extended User Datas,
Word 6 Extended User Datas,
Word 7 Extended User Datas,

Figure 4: VDIF Data Frame Header format; subscripts are field lengths in bits; byte numbers indicate

relative byte address within 32-bit word in little endian format [1]

The VDIF data format has been designed to overcome all the problems previously mentioned.

Every packet that is sent to the network, or reordered, contains an header and in Word 2 is

defined the data frame length which one would sensibly limit to fit into a Jumbo frame.

Timestamp inside the header has seen an evident change from the Mark5B format. Now
there is a 6 bit Reference Epoch counter in Word 1 (Ref Epoch) that is incremented every six
months starting from year 2000 (0), so the seconds now do not reset at midnight every day, but
instead begin from the reference epoch considered. Seconds can be found in Word 0 and even if

this design may not be thought as straightforward as the previous one, it prevents leap second

problems.

A data frame number is still present to mark the sampling rate of the experiment and
determine the fractional part of the second. In this case more room has been allowed (3 bytes)

to fulfill the requirements of higher rates.

3.1 VTP - VDIF transport protocol

In addition to this design there are 8 bytes that come before the VDIF header, similar to
the Mark5B PSN previously mentioned. When using a Filal0G formatter in recent firmare
implementations the VTP ’pre-header’ is a counter that starts the moment the Filal0G begins
sending data. This may be helpful in case of missing packets or packets that come in wrong

ordering due to the stateless UDP transfer protocol.

64 bit sequence number

VDIF Frame

Figure 5: VTP/UDP packet structure [2]

4 timeServerClient

The scripts architecture implemented to analyze VLBI data packets coming from a network
stream and verify time coherence between various streams begins on the client side.

timeServerClient is meant to capture the streams coming from the network, produced by a
formatter either in Mark5B or VDIF mode . In a Mark5B stream it is necessary to first identify
the packets containing headers, then detect whether the header contains T'VG bit to give out a
warning.

This preliminary Markb5B header analysis causes a bit of CPU load on the machine, though
it is necessary in order to prevent unwanted interferences by the TVG bit. In fact the MJD
+ seconds bits of the header may be interpreted a signed or unsigned int whether the TVG is
present or not.

If the TVG bit is detected, then the 2 bytes containing the MJD and seconds are masked
and the result is passed on to the timeServerClient UDP sender thread.

In case VDIF packets are received from a formatter, the 3 VDIF bytes representing seconds
stripped by it timeServerClient won’t need any analysis, but will be simply passed on.

In either case, once the program is started, the user will receive an immediate feedback
about the first valid packet captured by timeServeClient containing the seconds information,
an eventual T'VG presence warning when in Mark5B mode and the selected IP destination of
the packets including port number.

The UDP sender thread is sending the second bytes to a timeServerVib: instance only when

the frame number in any kind of header is marked as zero, which means at the beginning of

each second. In this way the workload is balanced across each machine that receives VLBI UDP
streams. Multiple timeServerClient instances could theoretically be run on the same machine

if receiving and sending ports are differentiated, though this is not advisable.

4.1 Usage

usage: timeServerClient.py [-h] [-p UDP_PORT] [-S SRV_IP] [-P SRV_PORT] [-v]

timeServerClient is the client part of timeServerVlbi that analyses packets

coming from a formatter.

optional arguments:
-h, --help show this help message and exit
-p UDP_PORT, --port UDP_PORT
port listening for formatter datastream
-S SRV_IP, --severip SRV_IP
time server ip
-P SRV_PORT, --serverport SRV_PORT
time server port
-v, —--vdif VDIF mode

5 timeServerVlbi

A timeServerVibi instance could be run on any machine receiving a VLBI data stream , though
depending on the experiment sampling could be wise to place it onto a third machine, preferably
connected with the other machines receiving data streams through an InfiniBand connection
that guarantees low latency.

The script main purpose is to log the seconds received from each macine running time-
ServerClient and produce information whether there are time slips on the formatters or any
other kind of useful information that could be extrapolated.

A user can automatically set multiple UDP receiving threads depending on the number of
data streams to be confronted. The script has been tested up to three machines. Comparing a
high number of data streams could potentially strain threads, though given the present number
of VLBI antennas it is at present a remote hypothesis.

The main program thread analyses the VLBI seconds packets received from various time-
ServerClient instances by marking their arrival time at the machine clock precision (microsec-
onds). Two queues are set up for each stream instance, one for the second bytes received and
the other for the arrival time of the packet. These queues are then confronted, first if they are
the same size, then if there are differences they are emptied. This can occur if there are network
problems, like packets getting lost, or disordered. When queues are all the same dimension,
and there are still differences in header seconds arriving in timeServerVibi queues, then they

are logged as a time slip error from the formatter.

This analysis implies that the formatter streaming source, like a Filal0G board, is close

enough to be recorded within a second.

5.1 Usage

usage: timeServerVlbi.py [-h] [-i HOST] [-c UDP_IPS] [-p UDP_PORTS] [-1 LOG]
[-v]

Instructions for timeServer

optional arguments:

-h, —--help show this help message and exit

-i HOST, --ip HOST your host IP

-c UDP_IPS, --client UDP_IPS
add client IPs MIN 2 MAX 4 eg : [-c 192.168.1.10 -c
192.168.1.11 ...]

-p UDP_PORTS, --port UDP_PORTS
add client ports MIN 2 MAX 4 eg : [-p 5001 -p 5002
...] make sure they MATCH the order of the IPs

-1 LOG, --log LOG log path/file name

-v, —-vdif VDIF mode

//‘\v'v

XX

\\»\"

/-\(

4 \

,_LT_A\
r - = — A

Formatter| |Formatter| |Formatter !

L — — — 4

Mark5B (network) / VDIF datastreams

' <« - -

A A 7
%I rll € (:_;Lj |

— [—] =

= =] IES 1

=] = ES)/
timeServerClient.py timeServerClient.py timeServerClient.py

/
\fmiband l infiniband /
|
I

timeServerVlbi.py

Figure 6: Working schema

6 Conclusions

The scripts development was dictated by the necessity to verify in real time the time synchro-
nization of various Filal0G boards that still at the time of writing this paper need constant
checking due to unexpected behavior. Time sync is still a manual task to be performed by opera-
tors before experiments, though an introduction of a GPS receiver to automatically synchronize
time on the boards may mitigate the problem.

On a second instance scripts have been adapted to be used by a general public, using any
kind of formatter as long as it produces a valid VDIF output format. This format is still
undergoing minor revisions and adjustments, like the introduction of the VIP counter which
was not found on earlier versions of the Filal0G firmware, so the scripts may need to be adapted
to future changes of the formatter output.

An interesting side usage of the scripts is to check network latency, as the log file reports the
arrival time of packets coming from different sources. For instance we have found that Medicina
has a network latency of 70.0006 seconds and Noto “0.017 seconds, when receiving packets in
Bologna.

The scripts package is going to be integrated into the DiFX distribution and can also be
found at this address:

http://vlbi-mgr.ira.inaf.it/timeserver/TimeServer.tar.gz

10

References

[1] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vlbi data interchange
format (vdif) specification. Technical Report 1.1.1, MIT Haystack Observatory and JIVE
and CSIRO/ATNF and NICT, http://www.vlbi.org/vdif/, June 2009.

[2] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vtp: Vdif transport
protocol. Technical Report 1.0.0, http://www.vlbi.org/, October 2013.

[3] Alan Whitney and Roger Cappallo. Mark5 memo 019. Technical Report 19, MIT,
HAYSTACK OBSERVATORY, http://www.haystack.mit.edu/, 2004.

11

