Procedura di qualifica automatizzata dei ricevitori di AAVS1

Simone Rusticelli

IRA Technical Report N° 506/17

Revisionato da: Federico Perini

Sommario

IRA Technical Report N° 506/171Indice delle figure3Indice delle tabelle4Introduzione5Schema del banco di misura7Setup del banco di misura9a. PreADU:9b. Transfer Switch Keysight 87222C:9c. Front End:9d. Raspberry Pi Model 3:9e. Power Supply Agilent E3631A:9f. PNA-X Keysight N5249A:9g. Notebook:9comfigurazione di rete10Come configuraze gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti18a. Parametri di diffusione (parametri S)18b. Punto di compressione a 1dB18
Indice delle figure3Indice delle tabelle4Introduzione5Schema del banco di misura7Setup del banco di misura9a. PreADU:9b. Transfer Switch Keysight 87222C:9c. Front End:9d. Raspberry Pi Model 3:9e. Power Supply Agilent E3631A:9f. PNA-X Keysight N5249A:9g. Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a. Parametri di diffusione (parametri S)18b. Punto di compressione a 1dB18
Indice delle tabelle4Introduzione5Schema del banco di misura7Setup del banco di misura9a. PreADU:9b. Transfer Switch Keysight 87222C:9c. Front End:9d. Raspberry Pi Model 3:9e. Power Supply Agilent E3631A:9f. PNA-X Keysight N5249A:9g. Notebook:9Configurazione di rete10Corne configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a. Parametri di diffusione (parametri S)18b. Punto di compressione a 1dB18
Introduzione5Schema del banco di misura7Setup del banco di misura9a.PreADU:9b.b.Transfer Switch Keysight 87222C:9c.c.Front End:9d.Raspberry Pi Model 3:9e.Power Supply Agilent E3631A:9f.PNA-X Keysight N5249A:9g.Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a.Parametri di diffusione (parametri S)18b.Punto di compressione a 1dB
Schema del banco di misura7Setup del banco di misura9a. PreADU:9b. Transfer Switch Keysight 87222C:9c. Front End:9d. Raspberry Pi Model 3:9e. Power Supply Agilent E3631A:9f. PNA-X Keysight N5249A:9g. Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a. Parametri di diffusione (parametri S)18b. Punto di compressione a 1dB18
Setup del banco di misura9a.PreADU:9b.b.Transfer Switch Keysight 87222C:9c.c.Front End:9d.Raspberry Pi Model 3:9e.Power Supply Agilent E3631A:9f.PNA-X Keysight N5249A:9g.Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a.Parametri di diffusione (parametri S).18b.Punto di compressione a 1dB
a.PreADU:9b.Transfer Switch Keysight 87222C:9c.Front End:9d.Raspberry Pi Model 3:9e.Power Supply Agilent E3631A:9f.PNA-X Keysight N5249A:9g.Notebook:9g.Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a.Parametri di diffusione (parametri S)18b.Punto di compressione a 1dB18
b.Transfer Switch Keysight 87222C:9c.Front End:9d.Raspberry Pi Model 3:9e.Power Supply Agilent E3631A:9f.PNA-X Keysight N5249A:9g.Notebook:9g.Notebook:9Configurazione di rete10Come configurare gli indirizzi di rete:10Programma di acquisizione Matlab11Sequenza di misura e configurazione degli strumenti16Calibrazioni18a.Parametri di diffusione (parametri S)18b.Punto di compressione a 1dB18
c. Front End: 9 d. Raspberry Pi Model 3: 9 e. Power Supply Agilent E3631A: 9 f. PNA-X Keysight N5249A: 9 g. Notebook: 9 Configurazione di rete 10 Come configurare gli indirizzi di rete: 10 Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB 18
d.Raspberry Pi Model 3:
 e. Power Supply Agilent E3631A: 9 f. PNA-X Keysight N5249A: 9 g. Notebook: 9 Configurazione di rete 10 Come configurare gli indirizzi di rete: 10 Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB
f. PNA-X Keysight N5249A: 9 g. Notebook: 9 Configurazione di rete 10 Come configurare gli indirizzi di rete: 10 Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB 18
g. Notebook:
Configurazione di rete 10 Come configurare gli indirizzi di rete: 10 Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB 18
Come configurare gli indirizzi di rete: 10 Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB 18
Programma di acquisizione Matlab 11 Sequenza di misura e configurazione degli strumenti 16 Calibrazioni 18 a. Parametri di diffusione (parametri S) 18 b. Punto di compressione a 1dB 18
Sequenza di misura e configurazione degli strumenti
Calibrazioni
 a. Parametri di diffusione (parametri S)
b. Punto di compressione a 1dB
c Cifra di rumore 18
d Non linearità
Annendice 20
Controllo PreADU mediante Raspherry 20
a Set un della configurazione di rete 20
h Controllo remoto del Raspherry 22
Lista dei comandi per il controllo della PreADLI

Indice delle figure

Figura 1 - Rappresentazione del banco di misura utilizzato per il collaudo dei ricevitori di AAVS1	7
Figura 2 – Rappresentazione del banco di misura utilizzato per il collaudo dei ricevitori di AAVS1	8
Figura 3 – Descrizione della nomenclatura dei comandi inviati alla PreADU	17
Figura 4 – Configurazione Transfer Switch (a sinistra 'OPEN', mentre a destra 'CLOSE')	17
Figura 5 – Desktop visualizzato all'avvio di Raspberry	20
Figura 6 – Particolare per entrare nel menù delle impostazioni di rete	21
Figura 7 – Impostazioni di rete del Raspberry	21
Figura 8 – Procedura per lo spegnimento del Raspberry	22
Figura 9 – Configurazione di PuTTY per la comunicazione via SSH per l'interfacciamento con il Raspberry.	22
Figura 10 – Schermata di avvio della sessione SSH	23
Figura 11 – Schermata dopo l'immissione corretta della password di accesso	24
Figura 12 – Schermata con l'invio di comandi per la comunicazione con la PreADU	24
Figura 13 - Tabella di verità per il controllo di filter bank e step attenuator sulla PreADU	25

Indice delle tabelle

Tabella 1 – Configurazione di rete per il setup del banco di misura	10
Tabella 2 – Configurazione del banco di misura	17
Tabella 3 – Configurazione PNA-X per misura parametri S.	18
Tabella 4 - Configurazione PNA-X per misura P1dB.	18
Tabella 5 - Configurazione PNA-X per misura della cifra di rumore	19
Tabella 6 - Configurazione PNA-X per misura delle non linearità.	19
Tabella 7 – Tabella dei comandi per la PreADU.	26

Introduzione

In guesto documento verrà descritta la procedura con la guale è stato approntato il sistema di collaudo dei 440 ricevitori per AAVS1 (Aperture Array Verification System). Per la produzione delle suddette 440 catene di ricezione per la costruzione del verification system di SKA è stato indetto un bando (Fornitura di un sistema ricevente per un array a bassa freguenza per un sistema denominato "Aperture Array Verification System 1 (AAVS1) per il progetto SKA consultabile alla pagina http://www.ira.inaf.it/Bandi_Gara/Bando_IRA_06_20160309/Bando.html). All'interno del capitolato tecnico del bando è stata definita una griglia di specifiche minime per il soddisfacimento dei requisiti richiesti dal consorzio. Si è reso quindi necessario effettuare dei test di qualifica ed accettazione della produzione prima che fosse utilizzata nel deserto australiano. Inizialmente si è utilizzata la strumentazione disponibile in quel momento, con il risultato che la caratterizzazione completa 'manuale' dei primi 40 ricevitori della preproduzione ha richiesto 3 giorni di lavoro (circa 1 ora a catena senza la produzione dei report). Consapevoli che sarebbe stata necessaria una riduzione dei tempi di misura, si è optato per una soluzione che permettesse di automatizzare il banco e che quindi portasse anche ad una minimizzazione della variabilità delle misure dovute alle connessioni manuali, della variazione dei livelli degli step attenuator interni agli strumenti per ridurne il deterioramento e ad una archiviazione dei dati più veloce.

Si è dunque optato per effettuare diversi upgrade dello strumento indispensabile alla misura, il PNA-X N5249A della Keysight, attraverso l'opzione 423 che permette di avere un combiner interno e generare la doppia sorgente per le misure di intermodulazione e l'opzione 029 che per mette di effettuare misure di cifra di rumore con il metodo Cold Source in maniera molto accurata (per maggiori informazioni a proposito dell'opzione 423 vedere il rapporto tecnico **IRA 505-17**). Grazie a questi upgrade e all'acquisto di transfer switch Keysight 87222C con relativo switch driver Keysight 11713B è stato quindi possibile effettuare la caratterizzazione di una catena di ricezione completa e la produzione del relativo report in circa 8 minuti. Qui di seguito è possibile vedere la configurazione del banco di misura a seguito degli upgrade effettuati.

Tale sistema di misura deve poter qualificare ciascuno dei ricevitori RFoF, composti da FE (Front End) ottico e PreADU (Pre Analog to Digital Unit), sia come consumi (potenza DC) che a radiofrequenza. Mediante l'utilizzo di script Matlab2016b scritti ad hoc tali strumenti di misura sono programmati, interconnessi e sincronizzati. A seguito delle misure viene prodotta, sempre in modo automatico, la reportistica richiesta dal consorzio SKA (Square Kilometre Array). Inoltre, per comodità e per un'analisi posteriore, viene creato uno spreadsheet contenente i risultati dei diversi test effettuati su tutti i ricevitori.

Schema del banco di misura

Di seguito è riportato lo schema a blocchi del banco di misura utilizzato per il collaudo dei ricevitori di AAVS1. I DC block (Minicircuits BLK-89) sono necessari per evitare che la corrente continua in uscita dalle porte RF dei Front End arrivi alle porte del PNA-X.

Figura 1 - Rappresentazione del banco di misura utilizzato per il collaudo dei ricevitori di AAVS1.

Figura 2 – Rappresentazione del banco di misura utilizzato per il collaudo dei ricevitori di AAVS1.

Setup del banco di misura

Ogni strumento necessita di essere settato secondo una procedura ben definita.

- a. PreADU:
 - 1. Collegare connettori Samtech Isorate IJ5H
 - 2. Basetta per alimentazione al Power Supply Agilent E3631A nella porta +6V con limite in tensione di +5V e connettore 10pin da Raspberry
 - 3. Connettere 8 fibre con transizioni LC/APC-LC/APC chiuse dall'altra parte (lato FE)
 - 4. Connettere i due SMA ai cavetti SMA provenienti dal Transfer Switch lato PreADU
- b. Transfer Switch Keysight 87222C:
 - 1. Connettere i due transfer switch con i connettori 10pin provenienti dallo Switch Driver Keysight 11713B (led accesi= configurazione 1-2,3-4; led spenti=1-4,2-3) mediante i cavetti
 - 2. Switch Driver configurazione di rete: IP rete privata 192.168.189.101, subnet mask 255.255.255.0, default gateway 192.168.189.1
- c. Front End:
 - 1. Connettere i cavetti SMA-MCX al trasmettitore ottico
 - 2. Connettere la fibra ottica al connettore corrispondente LC-LC
 - Connettere l'alimentazione alla porta +25V dell'alimentatore Agilent (Voltage limit impostato a +5V)

d. Raspberry Pi Model 3:

- 1. Connettere l'alimentazione
- 2. Collegare il cavo di rete
- 3. Collegare il cavo SPI alla scheda di interfaccia verso i transfer switch
- 4. Configurazione di rete: IP rete privata 192.168.189.205, subnet mask 255.255.255.0, default gateway 192.168.189.1

In Appendice è spiegata la procedura di setup della configurazione di rete e come accedere alla lista dei comandi eseguibili.

e. Power Supply Agilent E3631A:

- 1. Connettere alla porta GPIB l'adattatore Prologix GPIB-LAN (o qualsiasi altro adattatore GPIB-LAN) cui va connesso il cavo di rete
- 2. Configurazione di rete: IP rete privata 192.168.189.217, subnet mask 255.255.255.0, default gateway 192.168.189.1

f. PNA-X Keysight N5249A:

- 1. Connettere porta 1 e 3 ai DC block che a sua volta sono connessi ai transfer Switch lato Front End come da schema
- 2. Connettere porta 2 e 4 al transfer switch lato ricevitore come da schema
- 3. Connettere porta di rete con configurazione: IP rete privata 192.168.189.87, subnet mask 255.255.255.0, default gateway 192.168.189.1

g. Notebook:

1. Connettere la porta di rete con configurazione: IP rete privata 192.168.189.176, subnet mask 255.255.255.0, default gateway 192.168.189.1

Nota: nel caso non ci sia una rete internet cui accedere è necessario lasciare la configurazione con IP PRIVATO 192.168.189.XXX, subnet mask 255.255.255.0, default gateway 192.168.189.1, mentre se si è connessi ad una rete pubblica è possibile utilizzare gli stessi indirizzi (nella rete di Medicina per esempio) in cui però è cambiato il sesto numero: 192.167.189.XXX, subnet mask 255.255.255.0, default gateway 192.167.189.1.

Configurazione di rete

		IP Privato		Default	Default
Strumento	IP Pubblico		Subnet Mask	Gateway	Gateway
				Pubblico	Privato
PNA	192.167.189.87	192.168.189.87	255.255.255.0	192.167.189.1	192.168.189.1
Power Supply	192.167.189.217	192.168.189.217	255.255.255.0	192.167.189.1	192.168.189.1
Raspberry	192.167.189.205	192.168.189.205	255.255.255.0	192.167.189.1	192.168.189.1
Switch Driver	192.167.189.101	192.168.189.101	255.255.255.0	192.167.189.1	192.168.189.1
PC	192.167.189.XY	192.168.189.XY	255.255.255.0	192.167.189.1	192.168.189.1

Di seguito è riportata la configurazione di rete dei diversi strumenti interconnessi.

Tabella 1 – Configurazione di rete per il setup del banco di misura.

Come configurare gli indirizzi di rete:

- 1. <u>PNA</u>: è possibile configurarlo entrando nei menù di configurazione della rete LAN dal pannello di controllo.
- 2. <u>Switch Driver</u>: è possibile configurare gli indirizzi di rete direttamente entrando nel menù I/O configuration dello strumento stesso.
- 3. <u>Raspberry</u>: è necessario entrare nel menù della configurazione di rete all'interno del sistema operativo del Raspberry stesso (per fare questa operazione è necessario connettere il Raspberry ad uno schermo esterno, un mouse e una tastiera).
- 4. <u>Power Supply</u>: è necessario il software 'netfinder.exe' per modificare la configurazione di rete dell'interfaccia GPIB-LAN Prologix. Nel caso si utilizzi un altro adattatore GPIB-LAN è necessario seguire la procedura specifica del dispositivo.

<u>Nota:</u> non è necessario cambiare sempre gli indirizzi di rete da interno ad esterno agli strumenti a meno che non li si voglia vedere nella rete interna INAF, basta che abbiano l'indirizzo esterno (192.168.189.XY). Per poter vedere gli strumenti sia all'interno della rete INAF che all'esterno è necessario settare il pc in modo tale che abbia due indirizzi: quello di Medicina (192.167.189.XY) e quello esterno (192.168.189.XY).

Programma di acquisizione Matlab

Lo script Matlab scritto ad hoc permette di interconnettere i diversi strumenti e, seguendo la procedura riportata nella Tabella 2, configura i diversi strumenti per effettuare tutte le misure necessarie. Al termine di ogni misura i dati vengono salvati in remoto sull'hard disk del PNA per ridurre i tempi legati al trasferimento files e vengono elaborati dal notebook che permette una potenza di calcolo superiore. Di seguito è riportata una descrizione dei passaggi effettuati dal software durante l'esecuzione:

- 1. Inizializzazione della connessione con gli strumenti (PNA-X, Power Supply, Switch Driver-Transfer Switch). Vengono creati i virtual instrument mediante i quali poter configurare ed acquisire dati attraverso linguaggio SCPI.
- 2. Inizializzazione specifiche dei test (ricavate dal capitolato tecnico come riportato nelle tabelle seguenti).

Alimentazione	Valore	Note / Condizioni
		L'alimentazione avviene mediante una tensione continua non regolata
Vin FE	3.5-5VDC	compresa tra 3.5 e 5V tramite una coppia di conduttori in rame AWG18
		Ogni modulo FE deve integrare un proprio LDO
Consumo FE	<750mW	A 50°C con Vin FE=3.5V e senza gli LNA collegati ed alimentati
	3 5VDC	Ogni singola catena di ricezione nei moduli ORX-RF deve integrare un
VIII OKA+KI	3.3 V DC	proprio LDO
Consumo ORX-RF	<1300mW	
		Il FE deve replicare la sua tensione di alimentazione (Vin FE) su entrambi i
Alimentazione	3.5-5VDC	connettori coassiali RF di ingresso mediante appositi bias-tee
LNA	>150mA	Ogni bias-tee deve essere in grado di sostenere una corrente continua di
		150mA

Lunghezze d'onda WDM	Valori	Note / Condizioni
RF1 / RF2	1270nm / 1330nm	

Specifiche RF	Valori	Note
Banda RF	50-650MHz	
complessiva	50 05011112	
Flatness	+/-1 5dB	Misurata separatamente nelle due sotto-bande:
Tiatiless	+/ 1.5dD	LB (50-375MHz) e HB (375-650MHz)
Reiezione filtro	× 45 d₽	Freq ≤20MHz, +/-5MHz
passa alto	≥4JUD	Il filtro passa alto deve essere previsto nel modulo FE
Dejezione filtre I P	. 45 d₽	Freq ≥ 450MHz (+/-5MHz)
Relezione mitro Lb	≥ 4 50B	Il filtro LB deve essere previsto nel modulo ORX-RF
Dejezione filtre UD	≥45dB	Freq ≤ 325MHz & Freq ≥ 750MHz (+/-5MHz)
Relezione muto nd		Il filtro HB deve essere previsto nel modulo ORX-RF
	Min 54dB	Freq=100MHz
Guadagno	Tip 60dB	FE collegato direttamente al modulo ORX-RF
	Max 66dB	DSA impostato al minimo livello di attenuazione
IDI	>12dB	Misurato agli ingressi del FE
IKL		Banda 50-650MHz
ODI	>12dB	Misurato alle uscite del modulo ORX-RF
ORL		Misurato separatamente nelle bande LB e HB
NE	1610	Misurato separatamente nelle bande LB e HB
INF	<100B	FE collegato direttamente al modulo ORX-RF

		DSA impostato al minimo livello di attenuazione	
		Definito come la differenza tra i guadagni misurati alle due uscite del	
Isolamento canali	0.0.15	modulo ORX-RF con lo stesso ingresso del FE	
RF	>5000	Misurato su entrambe le bande LB e HB	
		DSA impostato al minimo livello di attenuazione	
		Freq=100MHz	
OP1dB	>+17dBm	FE collegato direttamente al modulo ORX-RF	
		DSA impostato al minimo livello di attenuazione	
		Freq=100MHz	
OIP3	>+18dBm	FE collegato direttamente al modulo ORX-RF	
		DSA impostato al minimo livello di attenuazione	
	>+38dBm	Freq=100MHz	
OIP2		FE collegato direttamente al modulo ORX-RF	
		DSA impostato al minimo livello di attenuazione	

Specifiche ambientali di lavoro	Valore	Note
Intervallo temperatura FE	-10 ÷ +50 °C	
Intervallo temperatura ORX-RF	+15 ÷ +30 °C	

- 3. Creazione della GUI per l'immissione del numero seriale del ricevitore che sta per essere collaudato.
- 4. Creazione ed assegnazione dei direttori in cui andare ad attingere i dati (tracce del PNA che vengono salvate nell'HDD interno) e creare le figure, il report Word e il file Excel di test.
- Configurazione del banco di filtri e del livello degli attenuatori della PreADU attraverso Raspberry, mediante software Plink (Putty deve avere una sessione salvata in cui è configurato l'indirizzo IP del Raspberry, porta 22, mediante il protocollo SSH e il campo 'user name' deve essere auto completato [Appendice]).

Nota: il software Plink deve essere posto in 'C:\Plink\' e i file di configurazione della PreADU "LP_CH0_00, LP_CH0_16, HP_CH0_00, HP_CH0_16,..." sono file di testo con all'interno i comandi per Raspberry (vedi **Errore. L'origine riferimento non è stata trovata.**): la cartella contenente Plink deve contenere anche i comandi .txt.

- 6. Inizializzazione del Report docx relativo al link sotto analisi.
- 7. Aggiornamento dello stato di avanzamento del test mediante visualizzazione della schermata dei test effettuati.
- 8. Creazione del documento word di report con risultati delle misure e test *Pass/Fail (come riportato qui sotto)*.

INAF	
Report date	05/09/16
Measure date	05/09/16
SN	F-001/201607

Parameter	Nominal Value	Note/Conditions	Measured Value	Test
Power FE consumption	<650mW	At room temperature with Vin=3.5V and without the LNA boards connected and biased.	0.586mW	Pass
Power ORX-RF consumption	<1250mW	At room temperature with Vin=3.5V. The value is obtained dividing by 8 the total absorption of a complete PREADU.	1.148mW	Pass
Flatness	+/-1.5dB	Measured in the two separate sub-bands: LB(50-375MHz) & HB(375-650MHz).	+/-1.4dB RF1 +/-1.3dB RF2@LB +/-1.1dB RF1 +/-1.0dB RF2@HB	Pass
High Pass filter rejection	>=45dB	Freq<=20MHz (+/-5MHz).	24MHz RF1 24MHz RF2	Pass
LB filter rejection	>=45dB	Freq>=450MHz (+/-5MHz).	430MHz RF1 431MHz RF2	Pass
HB filter rejection	>=45dB	Freq<=325MHz & Freq>=750MHz (+/-5MHz).	323MHz RF1 and 322MHz RF2@HP 725MHz RF1 and 726MHz RF2@LP	Pass
Gain	Min 54dB, Max 66dB	Freq=100MHz, FE connected directly to ORX-RF module with DSA at the minimum attenuation level.	60.0dB RF1 59.2dB RF2	Pass

IDI	s 12dB	Measured at the FE input (50-650MHz	12.2dB RF1	Date
IKL	>1205	band).	13.4dB RF2	P 033
		Measured at the ORX-RF output.	21.0dB RF1 and	
OPI	S12dB	Measured separately in the two sub-	21.1dB RF2@LB	Dace
ONE	71200	bands I R and HR	21.6dB RF1 and	1033
		bands co and no.	21.8dB RF2@HB	
		Measured separately in the two sub-	10.7dB RF1 and	
NE	<16dB	bands, FE connected directly to the ORX-	10.8dB RF2@LB	Pass
		RF module with DSA at 16dB attenuation	9.8dB RF1 and	
		level.	9.9dB RF2@HB	
		Defined as the difference between the		
		Defined as the difference between the	ER Ode DE1 and	
		measured gains at the two outputs of the	56.000 KPI and	
RF channel	>30dB	ORX-RF module with the same input of	57.80B RF2@LB	Pass
isolation		the FE. Measured on both bands LB e HB	54.5dB RF1 and	
		with DSA at the minimum attenuation	51.3dB RF2@HB	
		level.		
		Freq=100MHz_EE connected directly to		
ontda	> 17dB	the OPV PS module with DSA at the	17.9dBm RF1 and	
OPIGB	>1/06	the ORX-RF module with DSA at the	18.0dBm RF2	Pass
		minimum attenuation level.		
		Freq=100MHz, FE connected directly to		
OIP3	>18dB	the ORX-RF module with DSA at the	31.3dBm RF1 and	Pass
	minimum attenuation level.	30.6dBm RF2		
		Freq=100MHz, FE connected directly to	45 0dBm RE1 and	
OIP2	OIP2 >38dB	the ORX-RF module with DSA at the	40.000m Krianu	Pass
		minimum attenuation level.	48.40BM RF2	

Figure 2 - Measurements with HB selected.

Sequenza di misura e configurazione degli strumenti

Nella Tabella 2 sono riportate le fasi di esecuzione dello script Matlab e le configurazioni assunte dai diversi strumenti di misura. I campi evidenziati in giallo stanno ad indicare una modifica dei filter bank e/o degli step attenuator sulla PreADU mentre quelli evidenziati in verde indicano le modifiche relative allo Switch Driver che modifica la configurazione dei Transfer Switch.

Di seguito è riportato il diagramma di flusso dello script Matlab:

Figura 3 – Descrizione della nomenclatura dei comandi inviati alla PreADU.

Esecuzione operazione Matlab#	Misura	Configurazione Raspberry (= PreADU)	Configurazione Transfer Switch	
1	S_LB	LP_CH0_00	CLOSE (1-2,3-4)	
2	S_HB	HP_CH0_00	CLOSE (1-2,3-4)	
3	P1dB_LB	LP_CH0_00	CLOSE (1-2,3-4)	
4	IP_RF1_LB	LP_CH0_00	CLOSE (1-2,3-4)	
5	IP_RF1_HB	HP_CH0_00	CLOSE (1-2,3-4)	
6	IP_RF2_HB	HP_CH0_00	OPEN (1-4,2-3)	
7	IP_RF2_LB	LP_CH0_00	OPEN (1-4,2-3)	
8	NF_RF2_LB	LP_CH0_16	OPEN (1-4,2-3)	
9	NF_RF2_HB	HP_CH0_16	OPEN (1-4,2-3)	
10	NF_RF1_HB	HP_CH0_16	CLOSE (1-2,3-4)	
11	NF_RF1_LB	LP_CH0_16	CLOSE (1-2,3-4)	

Tabella 2 – Configurazione del banco di misura.

Figura 4 – Configurazione Transfer Switch (a sinistra 'OPEN', mentre a destra 'CLOSE').

Di seguito è riportata la lista degli acronimi utilizzati nella Tabella 2:

- LB o LP = Low Band (50-350MHz);
- HB o HP = High Band (375-650MHz);
- S = parametri S;
- IP = Prodotti di Intermodulazione;
- NF = Noise Figure;
- P1dB = Punto di compressione a 1dB.

Calibrazioni

Di seguito sono riportate le configurazioni delle calibrazioni relative alle diverse misure effettuate con il PNA-X.

a. Parametri di diffusione (parametri S)

La configurazione riportata in seguito si riferisce alla calibrazione del PNA-X utilizzata per le misure denominate 'S_LB e S_HB' (ovvero 'parametri S_Low Band' e 'parametri S_High Band'). In questa configurazione vengono misurati contemporaneamente i parametri S di entrambi i canali RF sfruttando la modalità 4 porte del PNA-X.

Parametro	Valore	Unità
Punti	1001	
IFBW	300	Hz
F start	10	MHz
F stop	1.01	GHz
Port1 power	-60	dBm
Sweep	Linear Frequency	
Calibraziono	Full 4-port (Ecal	
Calibrazione	N4431-60008)	

Tabella 3 – Configurazione PNA-X per misura parametri S.

b. Punto di compressione a 1dB

La configurazione riportata in seguito si riferisce alla calibrazione del PNA-X utilizzata per le misure denominate 'P1dB_LB' (ovvero 'Punto di compressione a 1dB_Low Band'). In questa configurazione vengono misurati contemporaneamente i punti di compressione di entrambi i canali RF sfruttando la modalità 4 porte del PNA-X.

Parametro	Valore	Unità
Punti	101	
IFBW	1	kHz
CW Frequency	100	MHz
Sweep	Power Sweep	
Start power	-50	dBm
Stop power	-35	dBm
Calibrazione	Full 4-port (Ecal	
Calibrazione	N4431-60008)	

Tabella 4 - Configurazione PNA-X per misura P1dB.

c. Cifra di rumore

Per questo tipo di misura è stato effettuato un upgrade del PNA-X, in particolare è stata installata l'Opzione 029 che aggiunge un ricevitore più sensibile per le misure di rumore, però solamente sulla porta 2 del PNA. Per questo motivo non è possibile fare misura a 4 porte della cifra di rumore. La configurazione riportata in seguito si riferisce alla calibrazione del PNA-X utilizzata per le misure denominate 'NF_RF1_LB, NF_RF2_LB, NF_RF1_HB e NF_RF2_HB' (ovvero 'Noise Figure_RF1_Low Band', 'Noise Figure_RF2_Low Band', 'Noise Figure_RF1_High Band' e 'Noise Figure_RF2_High Band'). Tali misure vengono effettuate in momenti distinti in quanto non è possibile utilizzare l'opzione 4 porte dal momento che il ricevitore per la misura di rumore è uno solo.

Parametro	Valore	Unità
Punti	101	
IFBW	300	Hz
F start	10	MHz
F stop	1.01	GHz
Noise Bandwidth	4	MHz
Sweep	Linear Frequency	
Power	-30	dBm
Attenuation	20	dB
Averaging factor	16	
Calibrazione	Scalar Noise	

Tabella 5 - Configurazione PNA-X per misura della cifra di rumore.

d. Non linearità

La configurazione riportata in seguito si riferisce alla calibrazione del PNA-X utilizzata per le misure di non linearità del secondo e terzo ordine denominate 'IP_RF1_LB, IP_RF2_LB, IP_RF2_LB e IP_RF2_HB' (ovvero 'Intermodulation Product_RF1_Low Band', 'Intermodulation Product_RF2_Low Band', 'Intermodulation Product_RF1_High Band' e 'Intermodulation Product_RF2_High Band'). Tali misure vengono effettuate in momenti distinti in quanto non è possibile utilizzare l'opzione 4 porte dal momento che è necessario l'utilizzo della doppia sorgente. La procedura da seguire per effettuare correttamente la calibrazione è riportata in **IRA 505-17**.

Parametro	Valore	Unità
Punti	201	
IFBW	300	Hz
F start	50	MHz
F stop	1	GHz
Sweep	Linear Frequency	
Power	-10	dBm
Attenuation	50	dB
Calibrazione	Source & Receiver Power	

Tabella 6 - Configurazione PNA-X per misura delle non linearità.

Appendice

Controllo PreADU mediante Raspberry

- a. Set up della configurazione di rete Connessione al Raspberry mediante:
 - i. HDMI monitor
 - ii. Tastiera USB
 - iii. mouse USB

In questo momento è possibile collegare il Raspberry alla corrente e attendere l'accensione; dopo circa 20-30 secondi comparirà il desktop come in Figura 5.

Figura 5 – Desktop visualizzato all'avvio di Raspberry.

Ora è possibile configurare i parametri di rete clickando con il tasto destro del mouse sulle doppie frecce indicate in Figura 6.

Figura 6 – Particolare per entrare nel menù delle impostazioni di rete.

A questo punto, clickando su Network preferences... si aprirà un menù come quello in Figura 7:

😨 Network Preferences 📃 📼						
Configure:	interface 👻	🛓 eth0 🕞				
Automatically configure empty options						
Indirizzo IP:	Indirizzo IP: 192.168.189.205					
Router:						
DNS Servers:	DNS Servers:					
DNS Search:						
Clear	Applica	Chiudi				

Figura 7 – Impostazioni di rete del Raspberry.

Ora è possibile configurare I parametri di rete. Dopo questa procedura, per rendere le modifiche effettive, è necessario riavviare il Raspberry (clickando su *Shutdown…* come descritto in Figura 8).

👅 🗇	🜞 🔇 🔽 pi
Programming	,
Strice Office	>
Internet	>
Games	>
Accessories	>
Help	,
Preferences	,
Run	
U Shutdown	
Cilling and Cilling and Cilling	o Edit View Rookma

Figura 8 – Procedura per lo spegnimento del Raspberry.

Ora è possibile connettere il Raspberry alla rete LAN.

b. Controllo remoto del Raspberry

Per controllare il Raspberry attraverso la rete locale è necessario l'utilizzo del protocollo SSH; è necessario scaricare il software gratuito P*uTTY*. Dopo l'installazione bisogna configurare la connessione SSH come spiegato in Figura 9.

Pull Y Configuration			()			
Category:	202					
 Gession Logging Generation Terminal Weyboard 	Basic optio	ns for your PuTTY	session			
	Specify the destination Host Name (or IP add	Specify the destination you want to connect Host Name (or IP address)				
Features	Connection type: Raw O Telnet	Connection type: Raw Telnet Rlogin SSH Serial				
Appearance Behaviour Translation Selection	Load, save or delete Saved Sessions	a stored session				
	PreADU_AUS					
Colours	Default Settings PreADU	Default Settings PreADU				
- Data	PreADU_AUS	Save				
Proxy Telnet Rlogin	ande_modgate					
⊕ SSH Serial	Close window on exit O Always O Ne	:: ver	clean exit			
About	lp	Open	Cancel			

Figura 9 – Configurazione di PuTTY per la comunicazione via SSH per l'interfacciamento con il Raspberry.

È necessario seguire i seguenti passaggi:

- b. Scrivere la configurazione IP e la porta;
- c. Selezionare Connection type SSH;
- d. In *Saved Sessions* si può assegnare un nome alla sessione Raspberry dedicata e clikare *Save.* In questo modo non sarà più necessario scrivere la configurazione LAN ma semplicemente clickando sulla Sessione e poi Open.

Ora PuTTY aprirà una finestra window come quella nella Figura 10.

Figura 10 – Schermata di avvio della sessione SSH.

La prima volt ache ci si connette può apparire una finestra popup di warning: semplicemente bisogna clickare di sSI e proseguire.

Ora bisogna inserire lo User Name e la Password:

User: **pi**

Password: raspberry (la password sarà nascosta)

Ora si potrà visualizzare una finestra come quella in Figura 11:

Figura 11 – Schermata dopo l'immissione corretta della password di accesso.

Ora è possibile inserire i comandi che controllano la scheda PreADU.

Nella Figura 12 è possibile vedere un esempio della sintassi di un comando:

Scrivendo "**Is**" e INVIO è possibile visualizzare la lista dei comandi che si possono eseguire. Per inserire un comando bisogna seguire il seguente schema:

"./" + "LP_CH0_00"+"INVIO":

- a. "./": comunica che si sta inviando un comando;
- b. "LP_CH0_00": si può selezionare il filter bank (LP per Low Pass e HP per High Pass), il canale (00 o 01, rappresenta il canale della scheda di interfaccia tra PreADU e Raspberry) e il livello di attenuazione (in dB) del Digital Step Attenuator (da 00 a 31 a step di 1dB).

國 pi@RpiPreADU: ~	-		×					
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent								
Last login: Mon Sep 12 12:44:07 2016								
pi@RpiPreADU:~ \$./LP CH0 00								
device: /dev/spidev0.0								
value: 05								
value sended: yes								
spi mode: 0								
bits per word: 8								
max speed: 500000 Hz (500 KHz)								
Input:								
FF FF FF FF								
FF FF FF FF								
FF FF FF FF								
FF FF FF FF								
output:								
prespiricabo. •								

Figura 12 – Schermata con l'invio di comandi per la comunicazione con la PreADU.

Lista dei comandi per il controllo della PreADU

	C1	C2	C3	OUTPUT		
	L	x	x	None		
	Н	L	Н	Low Pass		
	Н	Н	L	Band Pass		
		Switches Tr	uth TABLE			
C4	C5	C6	C7	C8	ATT	
L	L	L	L	L	0	
Н	L	L	L	L	1	
L	Н	L	L	L	2	
L	L	Н	L	L	4	
L	L	L	Н	L	8	
L	L	L	L	Н	16	
Step Attenuator Truth TABLE						

Figura 13 - Tabella di verità per il controllo di filter bank e step attenuator sulla PreADU.

Comando	Configurazione bit	Codice HEX	Comando	Configurazione bit	Codice HEX
LB_0_OFF	0010 0000	04	HB_0_OFF	0100 0000	02
LB_0	1010 0000	05	HB_0	1100 0000	03
LB_1	1011 0000	0D	HB_1	1101 0000	OB
LB_2	1010 1000	15	HB_2	1100 1000	13
LB_3	1011 1000	1D	HB_3	1101 1000	1B
LB_4	1010 0100	25	HB_4	1100 0100	23
LB_5	1011 0100	2D	HB_5	1101 0100	2B
LB_6	1010 1100	35	HB_6	1100 1100	33
LB_7	1011 1100	3D	HB_7	1101 1100	3B
LB_8	1010 0010	45	HB_8	1100 0010	43
LB_9	1011 0010	4D	HB_9	1101 0010	4B
LB_10	1010 1010	55	HB_10	1100 1010	53
LB_11	1011 1010	5D	HB_11	1101 1010	5B
LB_12	1010 0110	65	HB_12	1100 0110	63
LB_13	1011 0110	6D	HB_13	1101 0110	6B
LB_14	1010 1110	75	HB_14	1100 1110	73
LB_15	1011 1110	7D	HB_15	1101 1110	7B
LB_16	1010 0001	85	HB_16	1100 0001	83
LB_17	1011 0001	8D	HB_17	1101 0001	8B
LB_18	1010 1001	95	HB_18	1100 1001	93
LB_19	1011 1001	9D	HB_19	1101 1001	9B
LB_20	1010 0101	A5	HB_20	1100 0101	A3
LB_21	1011 0101	AD	HB_21	1101 0101	AB
LB_22	1010 1101	B5	HB_22	1100 1101	B3
LB_23	1011 1101	BD	HB_23	1101 1101	BB
LB_24	1010 0011	C5	HB_24	1100 0011	C3
LB_25	1011 0011	CD	HB_25	1101 0011	СВ
LB_26	1010 1011	D5	HB_26	1100 1011	D3
LB_27	1011 1011	DD	HB_27	1101 1011	DB
LB_28	1010 0111	E5	HB_28	1100 0111	E3
LB_29	1011 0111	ED	HB_29	1101 0111	EB
LB_30	1010 1111	F5	HB_30	1100 1111	F3
LB_31	1011 1111	FD	HB_31	1101 1111	FB

Comando	Banda	Attenuazione [dB]	Comando	Banda	Attenuazione [dB]
LB_0_OFF	Passa Basso	0 (500hm)	HB_0_OFF	Passa Alto	0 (50 Ohm)
LB_0	Passa Basso	0	HB_0	Passa Alto	0
LB_1	Passa Basso	1	HB_1	Passa Alto	1
LB_2	Passa Basso	2	HB_2	Passa Alto	2
LB_3	Passa Basso	3	HB_3	Passa Alto	3
LB_4	Passa Basso	4	HB_4	Passa Alto	4
LB_5	Passa Basso	5	HB_5	Passa Alto	5
LB_6	Passa Basso	6	HB_6	Passa Alto	6
LB_7	Passa Basso	7	HB_7	Passa Alto	7
LB_8	Passa Basso	8	HB_8	Passa Alto	8
LB_9	Passa Basso	9	HB_9	Passa Alto	9
LB_10	Passa Basso	10	HB_10	Passa Alto	10
LB_11	Passa Basso	11	HB_11	Passa Alto	11
LB_12	Passa Basso	12	HB_12	Passa Alto	12
LB_13	Passa Basso	13	HB_13	Passa Alto	13
LB_14	Passa Basso	14	HB_14	Passa Alto	14
LB_15	Passa Basso	15	HB_15	Passa Alto	15
LB_16	Passa Basso	16	HB_16	Passa Alto	16
LB_17	Passa Basso	17	HB_17	Passa Alto	17
LB_18	Passa Basso	18	HB_18	Passa Alto	18
LB_19	Passa Basso	19	HB_19	Passa Alto	19
LB_20	Passa Basso	20	HB_20	Passa Alto	20
LB_21	Passa Basso	21	HB_21	Passa Alto	21
LB_22	Passa Basso	22	HB_22	Passa Alto	22
LB_23	Passa Basso	23	HB_23	Passa Alto	23
LB_24	Passa Basso	24	HB_24	Passa Alto	24
LB_25	Passa Basso	25	HB_25	Passa Alto	25
LB_26	Passa Basso	26	HB_26	Passa Alto	26
LB_27	Passa Basso	27	HB_27	Passa Alto	27
LB_28	Passa Basso	28	HB_28	Passa Alto	28
LB_29	Passa Basso	29	HB_29	Passa Alto	29
LB_30	Passa Basso	30	HB_30	Passa Alto	30
LB_31	Passa Basso	31	HB_31	Passa Alto	31

Tabella 7 – Tabella dei comandi per la PreADU.