

A Digital Backend for the

Medicina Array Demonstrator

A. Mattana

IRA 508/17

Istituto di Radio Astronomia, Bologna, INAF

2

Referee: Marco Poloni

Index

 3

Index

Index

INDEX ... 3

INTRODUCTION .. 5

HARDWARE .. 6

SYSTEM REQUIREMENTS ... 6

REAL TIME POWER COMPUTING .. 7

ADC ... 8

FIRMWARE ..10

DIGITALIZATION .. 10

SYNCHRONIZATION .. 11

FREQUENCY CHANNELS ... 12

AMPLITUDE EQUALIZATION ... 13

INSTRUMENTAL PHASE CALIBRATION ... 14

THE 64 BIT SYSTEM .. 16

CONTROL SOFTWARE ..28

SYSTEM START UP ... 28

CHECK ANTENNA POWER .. 32

LOAD COEFFICIENTS ... 34

PLOT INSTANTANEOUS SPECTRA ... 36

SAVE RAW DATA ... 37

PLOT RAW DATA ... 37

UDP PACKETS DATA FORMAT ..40

THE DATA SET .. 40

MAPPING ANTENNA/RX/ADC ..43

FIRMWARE ANTENNA MAP ... 43

BEST RECEIVERS MAP ... 43

MAD RECEIVERS MAP ... 44

NETWORK RECEIVERS MAP ... 44

ACRONYMS..45

Index

4

Page intentionally left blank

Index

 5

Introduction

The Medicina Array Demonstrator Project (MAD) consists in one of the first SKA precursor. It is a 3x3

regular Vivaldi dual polarization antenna array. The aim of the project is to measure the array beam pattern

by using an artificial radio source, a sinewave transmitter (TX) installed on a remote controlled hexacopter

(UAV) flying over the array. The MAD backend acquires the signal received from the antennas and provides

in output preprocessed data. These are the course frequency bin containing the TX signal. The rest of the

frequency bins are just throw to save data rate.

The MAD project and its results are described in details on other the technical reports:

- The 2nd measurement campaign of the Medicina Array Demonstrator, G. Pupillo, G. Naldi, A.

Mattana, J. Monari, F. Perini, M. Schiaffino, P. Bolli, G. Virone, A. Lingua, IRA 479/14

- Medicina Array Demonstrator: Overview and Results of the third campaign, G. Pupillo, G. Naldi, A.

Mattana, J. Monari, M. Poloni, F. Perini, M. Schiaffino, G. Bianchi, P. Bolli, A. Lingua, I. Aicardi, H.

Bendea, P. Maschio, M. Piras, G. Virone, F. Paonessa, Z. Farooqui, R. Tascone, A. Tibaldi, IRA 482/14

The MAD Project ended in late 2014. The Backend Firmware and all the software have been maintained

afterwards to be able to complete some scientific test such the phase closure measurements done many

months later.

I started writing this document in 2015 but I finished writing only in 2017 because of the numerous work

commitments.

Hardware

6

Hardware

System Requirements

The digital backend for MAD experiment (Medicina Array Demonstrator) has been developed using the

ROACH-1 CASPER board (Reconfigurable Open Architecture Computing Hardware, see IRA 462/12 and

https://casper.berkeley.edu/wiki/Hardware) which is a VIRTEX 5 FPGA populated of many peripherals such

4x CX4 10Gbps high-speed serial connectors, 10/100Mbit RJ45 Ethernet, DDR2 DRAM DIMM, 2x 2M x 18-bit

QDRII+ SRAMs and much more.

The overall backend architecture is represented above. The IF analog signals arriving from the MAD optical

receivers are sampled by the ROACH’s ADC, then an onboard processing logic computes the FFT and makes

auto correlations and cross correlation products of the interested frequency channel and the beam formed.

These data arrives to the storage system via high speed 10 Gbit/s links, while the management is driven by

a separate Ethernet link.

The clock generator as well as the computers (through a NTP server) are synchronized using a ultra-stable

10 MHz reference sine wave and PPS signal provided by the MASER Atomic Clock.

The management computer is a NFS server for the ROACH 1 that expects to boot its operating system via

network, it is a UBUNTU LINUX OS 12.04 equipped with 2 networks card adapter, one for the public

network and the other one for the ROACHs private network. It provides also IP numbers as DHCP for the

ROACHs. The communication with the ROACH has been developed with the PYTHON programming

language using a set of Python modules (primitive) provided by the CASPER community that allows to

interact with the ROACH FPGA internal registers.

The storage system is a workstation equipped with a set of disk configured in RAID-0.

The Clock generator is the Rohde & Schwarz SMX Signal Generator 100kHz-1000MHz.

The 10 Gbit Ethernet Switch is the Fujitsu XG 700 with 12 CX4 ports.

https://casper.berkeley.edu/wiki/Hardware

Real Time Power Computing

 7

Real Time Power Computing

The aim of the Digital Backend is to acquire analog signals coming from the Vivaldi antenna array on the

field and to produce in output the result of the Beamformer and the FX-Correlator computed aboard. Two

independent parts of the firmware will produce output of 32 bit and 64 bit to allow the study of some

quantization effect over the digital chains. The firmware has been designed starting by an already tested

part which is a F-engine working as follow:

1. The 64ADCx64-12 board (https://casper.berkeley.edu/wiki/64ADCx64-12) samples 64 analog signals

at the same time and gives the 12 bits values to the FPGA in 4 clock cycles (16 per clock cycles in

serial).

2. The FPGA, that is at least 4 times faster than the ADC clock rate, takes 32 time domain antenna

samples and implements a digital Polyphase Filters Bank and the FFT to produce frequency

channels.

3. Each frequency channel can be equalized in amplitude with a gain factor and calibrated in phase.

Every computations of each stage (PFB, FFT, AMP, PHASE)* produce values that need to be represented

with a small number of bits to save FPGA resources. There are two independent branches of the same

project taking these values: a 32 bit system customized for the MAD case (9 dual pol antennas), and, a 64

bit programmable system.

* PFB=Polyphase Filter Bank, FFT=Fast Fourier Transform, AMP=Amplitude equalization, PHASE=Phase calibration

Hardware

8

ADC

The ADC is the 64ADCx64-12, 64 inputs, 64 Msps, 12 bit, double wide board (it uses both the 2 ZDOK

connectors) developed by Rick Raffanti. The next picture shows the ADC board, you can easily distinguish

the 8 ADC chips (8 input each), the two ZDOK connectors at the top, few input ports on the right used to

get differential sync signal (PPS) and a small connector at the bottom which links the analog inputs through

a flat cable (see also the previous picture).

The next picture shows the rear of the ROACH boards rack where you can see the blue flat cable in details

ending in a small printed circuit boards whit about 80 coaxial cables with SMA connectors for the analog

inputs (antennas and sync signals).

ADC

 9

The next picture shows the cabling, the black coaxial cables are the input signals coming from the optical

receivers (16 MHz of bandwidth centered at 30 MHz), the metallic boxes are some splitter used to close to

50 Ohm a set of unused ADC inputs.

Firmware

10

Firmware

Digitalization

The MAD3 firmware has been developed using the Xilinx System Generator® running in Mathworks

MATLAB® that allows to convert a Simulink® model file (which consist of simply block diagrams) in VHDL

code. Thanks to the CASPER engineering group that has developed the ROACH board there are many

custom library block sets to address all the Xilinx Virtex5® peripherals available, and some software to

compile the project file directly via the MATLAB command line that calls the XILINX ISE Suite® and produces

the FPGA bitfile.

We have already produced a firmware for the MAD2 test campaign that was customized for a minimal set

of correlations and for just one polarization because the transmitter aboard the UAV is a dipole

transmitting in one polarization. That firmware allows a limited set of data analysis but was very efficient in

terms of data rate and data volume produced. The idea of the MAD3 firmware is to improve the capabilities

such acquire the two polarization at the same time which allow imaging analysis, and improve the bit

quantization to investigate better some feature of the data, unfortunately all the changes increase seriously

both the data rate and the data volume.

There are common parts between the old and the new firmware: the digitalization of the analog inputs, the

channelization from time domain data to frequency channels, the amplitude equalization and the phase

calibration. Even the backend control registers are shared between firmwares.

Synchronization

 11

The ADC yellow block is a Simulink block written by the CASPER group that allows to address the ADC64in

board. It produces 16 digital output in a clock cycle and the 64 parallel outputs in 4 clock cycles. Running

the FPGA at least 4 times faster than the ADC board (which will have a dedicated synthetized clock signal)

you will be able to manage up to 64 different input. The format of the data is Fix_12_11 which means a

fixed point number of 12 bits with 11 bit of decimals.

Synchronization

The ADC block provides also the sync signal useful for the synchronization. A separate logic tests the syncs

of the 8 ADC chips on the ADC board and a python control scripts running during the initialization phase

test if the ADCs are aligned with the sync.

The ADC is locked to the two signals provided by the Maser Atomic Clock, a ultrastable 10 MHz sinewave

and a PPS. The host computer is synchronized via a local NTP server providing the station time. The station

time is a high precision clock locked again to the Maser 10 MHz sinewave and PPS, and verified periodically

comparing a time provided by a GPS receiver. During the initialization phase, after an ADC alignment test,

the host computer waits for a “new second” (having decimals parts less than 0.1s). This means a PPS signal

has been recently received from the firmware and then send a "sync arm" (labeled “arm rst” on the next

Simulink picture) signal to the firmware which arrives for sure within two PPS signals, the next PPS signal

arriving to the firmware will generate the master reset and will be the "t_zero" time of the firmware, that

time will be stored to local registers and attached to each observations file header. Each data packet has a

8 byte counter header which allows to know the acquisition time of each sample.

Firmware

12

Frequency channels

The MAD3 science case is a regular array of 9 dual polarization antenna for a total of 18 input signals. The

polyphase filters and the FFT logic blocks are optimized to manage parallel streams of 2n inputs, that’s way

we will develop the system to manage 32 input. As you can see in the previous picture only the even output

(dout0, dout2, dout4…) have been used where each lines carries 4 interleaved time domain streams.

The CASPER green block of “pfb_fir” combined the “fft_biplex_real” implement a poliphase filter which

consist of: multiply the analog signal to a discrete SYNC wave that correspond to a convolution of a RECT in

frequency domain to filter each sub-band. The number of sub-bands and the number of the coefficients

describing the SYNC is customizable with the block parameters, the higher those numbers the more FPGA

resources is required. The Simulink block used for the PFB is a customized PFB version to use the ADC64in,

called “pfb_fir_mux” which takes care about the 4 clock cycles to have the next value of the same stream,

and, a reorder block is needed before the FFT block which expect to receive continuous stream of the same

time domain data stream to compute the discrete Fourier transform. The output of the FFT are the N

frequency channels of each input and one line carries 8 streams in the following order: 0-4-1-5-2-6-3-7.

The width of the data is set to 36 bit for the complex number (36 bit is the unit of the Xilinx Virtex5

registers) and the format is Fix_18_17 for both the Real and the Imaginary values. The number of sub-

Amplitude Equalization

 13

bands in output from the FFT are 1024 (it is necessary to set both the size of the PFB and the size of FFT to

2048 points).

The order of the data leaving the FFT green blocks is as follow:

The next table shows an extract of the frequencies of each sub-bands, the left and right limits and the

center frequency of the first and the second harmonic. As you can see, the second harmonic has a reversed

order. The central sub-band of the 1024 FFT bins is the 512th which contains the frequencies around the 10

MHz and the 30 MHz.

Channel 1-Left 1-Center 1-Right 2-Left 2-Center 2-Right

508 9912109,4 9921875,0 9931640,6 30068359,4 30078125,0 30087890,6

509 9931640,6 9941406,3 9951171,9 30048828,1 30058593,8 30068359,4

510 9951171,9 9960937,5 9970703,1 30029296,9 30039062,5 30048828,1

511 9970703,1 9980468,8 9990234,4 30009765,6 30019531,3 30029296,9

512 9990234,4 10000000,0 10009765,6 29990234,4 30000000,0 30009765,6

513 10009765,6 10019531,3 10029296,9 29970703,1 29980468,8 29990234,4

514 10029296,9 10039062,5 10048828,1 29951171,9 29960937,5 29970703,1

515 10048828,1 10058593,8 10068359,4 29931640,6 29941406,3 29951171,9

516 10068359,4 10078125,0 10087890,6 29912109,4 29921875,0 29931640,6

Amplitude Equalization

The data streams reach 2 stages of multipliers that allow to equalize in amplitude and calibrate in phase the

antennas. It is possible to equalize and calibrate each frequency channel independently thanks to the

presence two BRAM (Block RAM of length 1024 each) which allow to load coefficients by the host

computer. Since the output of each multipliers has the bit width increased, a data cast (quantization) is

needed.

Firmware

14

The previous picture show in details the amplitude equalization stage: going into the Simulink subsystem

you will find the BRAM yellow block, and another subsystem “amp_scale” making the multiplication.

There are two multipliers that computes the multiplication between the real and imaginary part of the

complex number (fixed point 18.17 each) of the frequency channel and a coefficient in the fixed point 32.16

format. The result is converted to a Fixed 18.17 again.

Instrumental Phase Calibration

The phase calibration stage is similar to the previous stage without the “real mult” subsystem which is a

complex multiplication between the frequency channel and the phase correction loaded into the BRAM.

Instrumental Phase Calibration

 15

The phase correction factor is a complex number having the real and imaginary part written has a fixed

point 16.15 each. The data output is a complex number where real and imaginary part have the format

35.32 each. This 70 bit number will be the final number which will be used for the auto correlation and

cross correlation products in the new firmware, while the old branch of the firmware will keep a quantized

data of 8.7 bit for real and imaginary part each.

Each stage of multiplier is grouped in subsystems and shown as in the follow picture in the top level

Simulink model file.

Firmware

16

The 64 bit system

The following scheme describes the “State Machine”: 32 streams of data are channelized and equalized.

Then the frequency channel bin containing the sine wave transmitted by the drone is cached by a

combination of FIFOs and a Dual Port RAMs.

The first raw of the block diagram is the common part between the two independent systems producing

more or less the same output with different resolution (bit quantization). There are 4 parallel streams of

antenna spectra (organized by antennas and not by frequency channels) where few logic blocks catch the

512th channel where we expect to find the sine wave transmitted by the drone at 408 MHz.

The 64 bit system

 17

The edge detect green block (set to rising edge, active high) over the 10th bit of a 13 bit counter (that counts

from 0 to 8191) generates the FIFO write enable signal. It will produce a one clock high level signal every

1024 clock cycle (each spectra is composed of 1024 frequency bin), starting from the first 512th channels.

The master reset of that counter is aligned with the sync signal escaping from the last equalization block to

ensure that the first sample is the frequency channel #0 and aligned with the timestamp of the first spectra

saved in the header BRAM.

The 32 frequency channels reach the 4 FIFOs (4 streams of 8 spectra each) in a window of 8192 clock cycles

then few logic blocks allow to empty one FIFO at a time shortly afterwards in order to save that data into

two twins Dual Port RAMs.

Firmware

18

The next picture shows the result using the simulation logic blocks instantiating a constant number for each

spectra in the right order. Considering the latency clock cycles when reading data from a FIFO, the 32

frequency channels stored in the DRAM is a ramp between values 0 and 31.

The 64 bit system

 19

Each dual port RAM contains the same values at the same address. Each address represents the index of

the data stream that is the antenna number. Due to the structure of the parallel FFT a remap of that

addresses is needed. The choice to have 2 twins Dual Port RAM is to extract 2 factors at the same clock

cycle for the Cross-Correlation engine, while, the choice of a Dual Port (whit respect to a simple RAM)

allows to run other engine at the same time, the Beam-Engine and the Auto-Correlation engine (that work

using the same input).

Two multiplexer change the source of the address line of DRAM port A for write operations and read

operations.

This system has been designed to work with dual pol antenna and produces in output the sequence of all

the Auto-Correlation data (both pol-H and pol-V), the user defined Cross-Correlations and the total Beam of

each pol. The Correlations set to be computed is loaded by the user into FPGA BRAMs called “A_Factor”

and “B_Factor” and it is the complex multiplication between A and the conjugate of B.

That BRAMs as well as the two BRAMS “pol_h” and “pol_v” contain the values of the addresses of the

interested antennas that must match the ADC inputs where the MAD antennas have been connected. The

firmware can only read values from the BRAM (see the write enable signal of the BRAM always set to zero),

while the user can write to them via Ethernet. The width of the BRAM values is 32 bit, due to the limit of 32

antennas a slice of the last 5 bits provides the range values of 0-31. The size of the BRAMs is the minimum

instantiable that is 1024 nevertheless further logics set the real maximum limit to 128, that means, there is

not allowed ask to compute more than 128 Cross-Correlations or Auto-Correlation.

Firmware

20

This limit has been fixed in order to do not exceed the 10Gbit packets volume limit for the 64 bit size of the

output data, and, to fit the data rate allowed by the host computer that receives these packets that has

been properly configured and equipped with a set of disk in RAID which guarantees write speed of about

350MB/s.

There are two software register into the FPGA firmware that store the number of the antennas used (that

means the number of ADC input signals used) and the number of the correlations that have to be

computed. These two numbers tell the firmware how many iterations must be done to extract valid data

from BRAMs.

When the DRAM write enable goes down the computation engines starts. The DRAM output port A gives

values for the X-Engine (correlation products) while the output port B values for the Beam-Former and

Auto-Correlation products. The address lines A and B of each dual port must have the correct address of

each factor. An additional logic (shown in the next pictures) must generate the address line for the BRAM

to output valid addresses for the dual port RAMs.

The 64 bit system

 21

As seen in the above pictures, “bram_pol_addr” and “bram_addr” values are the addresses for the BRAM,

while BRAM output signals called “ram_adrxxx” are the addresses for the dual port RAMs.

Each engine receives the respective input data and takes different latency for the computations depending

on the complexity. The easiest engine is the Beam-Former that makes a complex sum of each antenna

frequency. This is done using a simple Xilinx Accumulator block which needs to be reset to zero value at

least a clock cycle before the first valid data is present at the input port “b”. The sum must be enabled

rising a “en” signal in line with the input data and the result of the sum is available after a clock cycle.

The output of the accumulator which grows up a bit for each sum (worst case) must be quantized due to

the limited bandwidth. We have decided to have an output beam formed made by 64 bit for the complex

number (32 for the Real part, 32 for the Imaginary part).

The same antenna frequencies signals go to the Auto-Correlation product. It is a complex multiplication

between a value and complex conjugate of the same value done by the green block on the left of the next

picture where the upper engine computes the polarization H and the lower engine the polarization V.

Firmware

22

Each single result is stored to a FIFO ready to be sent to the 10 Gbit packetizer. A “FIFO Empty” signal will

tell if the FIFO is empty or there are still complex values to read. The X-Engine that computes the cross-

correlation products (interference fringes) is equal to the previous engine unless the product factors are

not the same values but the frequencies of different antenna of the array. In any case, the output of the

green block is internally quantized to match the 64 bit constraints.

These engines run for a short period because it works with input buffered data. The next set of products (or

accumulations in case of the Beam-Former) will be available in about 8000 clock cycles. That sounds like

there is enough time to make thousands computations, but the data rate and the data volume of the

output data saturate the output bandwidth (especially using 64 bits). We have chosen to limit to a

maximum of 128 Auto-Correlations and 128 Cross-Correlations products. For the MAD test case those

numbers guarantees to acquire the 9 dual polarization antennas with the full correlation matrix (9 Auto-H,

9 Auto-V, 36 Cross-Correlations and the 2 Beams of H and V). The next picture is very interesting shows the

burst of data every 8192 clock cycles.

The 64 bit system

 23

All engines have finished to compute their products and now the FIFOs are full of data and must be

emptied. A few logic blocks produce, in sequence, the read enable signals to read the FIFO data in the

order: AUTO-H, AUTO-V, CROSS. The next pictures shows how it is done.

Firmware

24

A high level control logic must exist to implement the machine state that serializes the output data. The

next picture shows the logic that allow the FIFO-H read enable to start at first, then the FIFO-H, and last the

FIFO-X. At the end it is needed to present to the data bus of the packetizer also the output of the beam-

former accumulators.

The 64 bit system

 25

A big multiplexer is demanded to switch between data flow and the selection of the mux input is shown on

the next pictures.

Using the simulated data it is shown on the next picture the behavior of this part. The simulation stimulus

used are: number of antennas 9, number of cross correlations 8 (minimal correlation matrix), and the

address of the ADC input used are from zero to 17.

Following the path with the “sim_data” Boolean value set to 1, the AUTO-H values must be a series from 0

to 8, the AUTO-V a series from 9 to 17, and the Cross-Correlation a series from 0 to 7. Looking at the

bottom signal called “valid” you will see the “data” over the output serial bus, and the upper signals

suggest which data stream is. The last spot of data is the BEAM-H and the BEAM-V that need always only 2

Firmware

26

clock cycles while the AUTO and CROSS windows can have different length depending on how many

antennas is connected and how many cross-correlations have been programmed.

The next picture has been produced zooming in Y the previous picture in order to demonstrate that the

Beams have the right accumulated values that is 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 for the polarization H

and 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 = 117 for the polarization V.

The “med_makepkg64” orange block is the block the prepare the 10 Gbit packet. It expects to have a data

valid signal in line with the 64 input data and the size of the packet. Since this block prepend a counter in

each packet (useful to compute in post-elaboration the timestamp of each data) it is important to have the

size parameter multiple of AUTO-X + AUTO-V + CROSS + BEAM-H + BEAM-V, otherwise input data validated

on the same clock cycle where the counter is written will be lost. That counter is a 64 bit value that is

written the clock cycle after the “pkt_eof” signal for the 10 Gbit has been raised. The size of the packet can

be loaded and modified by the user writing the software register called “gbe_abx_len”.

The 64 bit system

 27

Control Software

28

Control Software
All the control software have been developed in Python 2.7 scripts.

System Start Up

To start up the system you need to run a Python script that reads the configurations in a file.

oper@fahal:~/MAD4/bee2$ python mad4_start.py --help

Usage: mad_start.py <ROACH_HOSTNAME_or_IP> [options]

Options:

 -h, --help show this help message and exit

 -p, --skip_prog Skip FPGA programming (assumes already programmed).

 Default: program the FPGAs

 -c CONFIG_FILE, --config=CONFIG_FILE

 Select the Configuration file

 -e, --skip_eq Skip Default Equalization. Default: Equalize Amp 3.5

 and Phase 0 to 18 ant

Where the configuration file has these informations:

oper@fahal:~/MAD4/bee2$ more configura.conf

[OBSERVATION]

observ_site = Medicina

antenna_type = Vivaldi_2.0

ants = 9

pols = 2

freq_channel = 512

[CONFIG_FILE]

pol_h = mad_pol_h.conf

pol_v = mad_pol_v.conf

xcorr = mad_corr.conf

amp_eq = mad_amp_eq.conf

phase_eq = mad_phase_eq.conf

adc_curve = adc_curve.txt

header = header.conf

rx_network = rx_network.txt

rx_map = rx_mad_best.txt

[FENG_CONF]

roach_name = feng

katcp_port = 7147

bitstream = mad_full_corr_2014_May_13_2258.bof

adc_debug = False

adc_name = x64_adc

pkt_len = 0

head_len = 2048

clock_rate = 160000000

sample_rate = 40000000

pfb_size = 11

pfb_in_signals = 0

pfb_window = Hamming

pfb_in_bitwidth = 12

System Start Up

 29

pfb_out_bitwidth = 18

pfb_coeff_bitwidth = 18

pfb_quant_behavior = Round_EvenValues

fft_size = 11

fft_shift = 1877

fft_in_bitwidth = 18

fft_out_bitwidth = 18

fft_quant_behavior = Round_EvenValues

fft_of_behavior = Wrap

gbe-0 = gbe_abx

gbe-0_dest_ip = 3232238347

gbe-0_dest_port = 7200

gbe-0_pkt_len = 648

gbe-1 = not_used

gbe-1_dest_ip = 0

gbe-1_dest_port = 7201

gbe-1_pkt_len = 648

gbe-2 = gbe_beam

gbe-2_dest_ip = 3232238348

gbe-2_dest_port = 7202

gbe-2_pkt_len = 648

gbe-3 = gbe_corr

gbe-3_dest_ip = 3232238348

gbe-3_dest_port = 7203

gbe-3_pkt_len = 648

Example of use:

oper@fahal:~/MAD4/bee2$ python mad4_start.py

===================================

Connecting to ROACH board named "feng"... ok

 Deprogramming FPGAs

 Programming feng with bitstream mad_full_corr_2014_May_13_2258.bof

Writing base_conf...

Setting N ant to 9

Setting Frequency channel to 512

 HPOL ANT-F VPOL ANT-F

 H001 8 V001 7

 H002 15 V002 3

 H003 11 V003 0

 H004 12 V004 16

 H005 13 V005 4

 H006 24 V006 5

 H007 14 V007 2

 H008 9 V008 1

 H009 10 V009 6

 Correlation List (A * Bconj)

 V003 <---> V008 H001 <---> H008

 V003 <---> V007 H001 <---> H009

 V007 <---> V002 H009 <---> H003

 V007 <---> V005 H009 <---> H004

Control Software

30

 V007 <---> V006 H009 <---> H005

 V007 <---> V009 H009 <---> H007

 V007 <---> V001 H009 <---> H002

 V003 <---> V004 H001 <---> H006

Starting interface gbe_abx

Set UDP packets destination IP:Port to 192.168.11.11:7200

Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

Starting interface gbe_beam

Set UDP packets destination IP:Port to 192.168.11.12:7202

Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

Starting interface gbe_corr

Set UDP packets destination IP:Port to 192.168.11.12:7203

Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

EQ AMP FLAG: True , it means the amplitude equalization block is active!

 Calibrating ADC on feng

 SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

 SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

 SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

 SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

 SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

 Arming F Engine and setting FFT Shift... Armed.

Expect trigger at 11:59:01 local (10:59:01 UTC). Updating header BRAM with

t_zero=1512212341

Read from header t_zero=1512212341

Updating header BRAM with fft_shift=1877

Read from header fft_shift=1877

Loading Amp calibration file: eq/default_amplitude_correction.txt

done

Loading phase calibration file: eq/0_phase_correction.txt

done

Antenna 0, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 1, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 2, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 3, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 4, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 5, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 6, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 7, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 8, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 9, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 10, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 11, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 12, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 13, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 14, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 15, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 16, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 17, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 18, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 19, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

System Start Up

 31

Antenna 20, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 21, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 22, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 23, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 24, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 25, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 26, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 27, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 28, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 29, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 30, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 31, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Modifying calibration coefficients for antenna 0

Modifying calibration coefficients for antenna 1

Modifying calibration coefficients for antenna 2

Modifying calibration coefficients for antenna 3

Modifying calibration coefficients for antenna 4

Modifying calibration coefficients for antenna 5

Modifying calibration coefficients for antenna 6

Modifying calibration coefficients for antenna 7

Modifying calibration coefficients for antenna 8

Modifying calibration coefficients for antenna 9

Modifying calibration coefficients for antenna 10

Modifying calibration coefficients for antenna 11

Modifying calibration coefficients for antenna 12

Modifying calibration coefficients for antenna 13

Modifying calibration coefficients for antenna 14

Modifying calibration coefficients for antenna 15

Modifying calibration coefficients for antenna 16

Modifying calibration coefficients for antenna 17

Modifying calibration coefficients for antenna 18

Modifying calibration coefficients for antenna 19

Modifying calibration coefficients for antenna 20

Modifying calibration coefficients for antenna 21

Modifying calibration coefficients for antenna 22

Modifying calibration coefficients for antenna 23

Modifying calibration coefficients for antenna 24

Modifying calibration coefficients for antenna 25

Modifying calibration coefficients for antenna 26

Modifying calibration coefficients for antenna 27

Modifying calibration coefficients for antenna 28

Modifying calibration coefficients for antenna 29

Modifying calibration coefficients for antenna 30

Modifying calibration coefficients for antenna 31

Connecting to ROACH board named "feng"... ok

 Writing phase coefficients... done

 Updating phase coefficients on header bram... done

 Writing amp coefficients... done

 Updating amp coefficients on header bram... done

Control Software

32

Check Antenna Power

There are two Python Scripts to read the Power at ADCs level.

Read Antenna Power

The first script is just to read the dBm Level and Effective Number of Bits used.

oper@fahal:~/MAD4$ python mad_adc_pwr.py --help

Usage: mad_adc_pwr.py [options]

Options:

 -h, --help show this help message and exit

 -c CONFIG_FILE, --config_file=CONFIG_FILE

 Configuration File [Default: "./configura.conf"]

 -r ROACH_NAME, --roach_name=ROACH_NAME

 Configuration File [Default: "./configura.conf"]

oper@fahal:~/MAD4$ python mad_adc_pwr.py

Connecting to ROACH board named "feng"... ok

 HPOL BITS dBm VPOL BITS dBm

--

 H001 8.03 -8.11 V001 8.14 -7.42

 H002 8.02 -8.18 V002 8.06 -7.97

 H003 7.98 -8.39 V003 8.02 -8.16

 H004 8.05 -8.03 V004 8.03 -8.14

 H005 7.94 -8.61 V005 8.04 -8.05

 H006 7.90 -8.85 V006 7.99 -8.31

 H007 7.91 -8.76 V007 8.01 -8.20

 H008 7.92 -8.72 V008 8.00 -8.25

 H009 8.05 -8.01 V009 8.02 -8.16

 2017-12-02 10:44:55.795170 UTC

Check Antenna Power

 33

Interactive Antenna Equalization

The second script can be used also to equalize the level of the signals by changing the digital step

attenuator value of the MAD receivers:

oper@fahal:~/MAD4/bee2$ python mad_equalize_rx_ch.py

Connecting to ROACH board named "feng"... ok

Connetion to 192.168.69.1 :5002... ok!

Connetion to 192.168.69.2 :5002... ok!

Connetion to 192.168.69.3 :5002... ok!

Connetion to 192.168.69.4 :5002... ok!

 HPOL BITS dBm RxdB diff VPOL BITS dBm RxdB diff

 H001 7.68 -10.15 10.0 10.2 V001 7.68 -10.10 10.0 10.1

 H002 7.68 -10.15 10.0 10.2 V002 7.70 -9.99 10.5 10.0

 H003 7.65 -10.32 8.0 10.3 V003 7.69 -10.07 9.0 10.1

 H004 7.74 -9.79 10.0 9.8 V004 7.70 -9.98 9.5 10.0

 H005 7.70 -10.03 10.5 10.0 V005 7.69 -10.07 9.0 10.1

 H006 7.71 -9.94 10.0 9.9 V006 7.63 -10.42 10.0 10.4

 H007 7.71 -9.94 9.0 9.9 V007 7.66 -10.22 8.5 10.2

 H008 7.68 -10.12 10.5 10.1 V008 7.70 -9.99 10.0 10.0

 H009 7.71 -9.96 9.5 10.0 V009 7.67 -10.19 9.5 10.2

 2017-12-02 11:29:28.490257 UTC

 Press [h] key to Equalize Pol H

 Press [v] key to Equalize Pol V

 Press [q] key to Exit

Control Software

34

Load Coefficients

There is a Python script that allows to load Phase and Amplitude coefficients to the backend.

oper@fahal:~/MAD4/bee2$./mad_eq.py -A eq/default_amplitude_correction.txt -P

eq/0_phase_correction.txt

Loading Amp calibration file: eq/default_amplitude_correction.txt

done

Loading phase calibration file: eq/0_phase_correction.txt

done

Antenna 0, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 1, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 2, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 3, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 4, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 5, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 6, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 7, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 8, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 9, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 10, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 11, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 12, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 13, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 14, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 15, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 16, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 17, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 18, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 19, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 20, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 21, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 22, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 23, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 24, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0

Antenna 25, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 26, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 27, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 28, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 29, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 30, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Antenna 31, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

Modifying calibration coefficients for antenna 0

Modifying calibration coefficients for antenna 1

Modifying calibration coefficients for antenna 2

Modifying calibration coefficients for antenna 3

Modifying calibration coefficients for antenna 4

Modifying calibration coefficients for antenna 5

Modifying calibration coefficients for antenna 6

Modifying calibration coefficients for antenna 7

Modifying calibration coefficients for antenna 8

Modifying calibration coefficients for antenna 9

Modifying calibration coefficients for antenna 10

Modifying calibration coefficients for antenna 11

Modifying calibration coefficients for antenna 12

Modifying calibration coefficients for antenna 13

Modifying calibration coefficients for antenna 14

Modifying calibration coefficients for antenna 15

Load Coefficients

 35

Modifying calibration coefficients for antenna 16

Modifying calibration coefficients for antenna 17

Modifying calibration coefficients for antenna 18

Modifying calibration coefficients for antenna 19

Modifying calibration coefficients for antenna 20

Modifying calibration coefficients for antenna 21

Modifying calibration coefficients for antenna 22

Modifying calibration coefficients for antenna 23

Modifying calibration coefficients for antenna 24

Modifying calibration coefficients for antenna 25

Modifying calibration coefficients for antenna 26

Modifying calibration coefficients for antenna 27

Modifying calibration coefficients for antenna 28

Modifying calibration coefficients for antenna 29

Modifying calibration coefficients for antenna 30

Modifying calibration coefficients for antenna 31

Connecting to ROACH board named "feng"... ok

 Writing phase coefficients... done

 Updating phase coefficients on header bram... done

 Writing amp coefficients... done

 Updating amp coefficients on header bram... done

Control Software

36

Plot Instantaneous Spectra

It is possible to plot instantaneous spectra by using the script ./snap_mad.py:

The Spectra plot title will be referring to the Feng antenna name.

Save Raw Data

 37

Save Raw Data

There is a script developed in C to save UDP raw data packets ./c_save_udp. The usage is shown in the

following example. The function argument is the name of the output file and will be stored in the data

directory. The beginning of the saved file will contain the Header Bram information such the list of the

correlations, the T_Zero time to compute the timestamp for each samples, and all the field described in the

Firmware Chapter. The recording will terminate injecting a Keyboard interrupt Key (CTRL+C).

oper@fahal:~/MAD4$./c_save_udp abx

Server : Socket() successful

Server : bind() successful

./mad_header_fullcorr.py -o data/2017-12-02_152409_NEW_abx.dat

Connecting to ROACH board named "feng"... Writing file header... done!

Receiving packets from 192.168.11.188:7200

First Counter: 120232

^C

oper@fahal:~/MAD4$ ls -al data/2017-12-02_15

2017-12-02_151225_NEW_test.dat 2017-12-02_152409_NEW_abx.dat

oper@fahal:~/MAD4$ ls -al data/2017-12-02_152409_NEW_abx.dat

-rw-rw-r-- 1 oper oper 49540232 Dec 2 15:24 data/2017-12-02_152409_NEW_abx.dat

Plot Raw Data

There are two way to plot the saved data. Using the script plot_mad.py you need to specify as function

argument what to plot:

oper@fahal:~/MAD4$ python plot_mad.py --help

Usage: plot_mad.py [options]

Options:

 -h, --help show this help message and exit

 -p, --plus_marker Plot with '+' (plus markers)

 -f FNAME, --fname=FNAME

 The name of the file to be plotted

 -s INT_SIZE, --int_size=INT_SIZE

 Integration Size in milliseconds

 -i INDICE, --index=INDICE

 Select which 16 bits plot (Re-Pol1=0, Im-Pol1=1,Re-

 Pol2=2, Im-Pol2=3), Default=0

 -b, --beam Show the beam with power

 -a, --plot_auto Plot all auto-correlations

 -c, --plot_cross Plot all correlations

 -x, --plot_complex Plot real and imaginary components

Control Software

38

oper@fahal:~/MAD4$ python plot_mad.py -b -f data/2017-12-02_152409_NEW_abx.dat

Reading file: data/2017-12-02_152409_NEW_abx.dat

Grabbing Header

T zero is 2017-12-02 14:22:19

Header size is 2048

Packet size is 672

100%

Plotting a beam

Process terminated in 0:00:02.342316

As alternative, you can use an interactive script that shows the list of what is contained in the file:

oper@fahal:~/MAD4$ python plot_mad_new.py -f data/2017-12-02_152409_NEW_abx.dat

Reading file: data/2017-12-02_152409_NEW_abx.dat

Grabbing Header

T zero is 2017-12-02 14:22:19

Header size is 2048

Packet size is 672 (5384 Bytes)

Number of dual pol antenna 9

Number of baselines 16

Retrieving Data Map...

Total elements 36

 0: H001_H001 1: H002_H002 2: H003_H003 3: H004_H004

 4: H005_H005 5: H006_H006 6: H007_H007 7: H008_H008

 8: H009_H009 9: V001_V001 10: V002_V002 11: V003_V003

12: V004_V004 13: V005_V005 14: V006_V006 15: V007_V007

16: V008_V008 17: V009_V009 18: V003_V008 19: H001_H008

20: V003_V007 21: H001_H009 22: V007_V002 23: H009_H003

24: V007_V005 25: H009_H004 26: V007_V006 27: H009_H005

28: V007_V009 29: H009_H007 30: V007_V001 31: H009_H002

32: V003_V004 33: H001_H006 34: BEAM-H 35: BEAM-V

Plot Raw Data

 39

Select a stream to plot: 34

Plotting BEAM-H (34)...

100%Process terminated in 0:00:02.297335

The following picture shows the onboard computed visibility between the antenna #7 and antenna #1 in a

UAV flight along the V pol:

UDP packets data format

40

UDP packets data format

The Data Set

As explained above the content of UDP packets depends on the correlation products programmed and the

number of antenna used. In general, the sequence AUTO-X, AUTO-V, CORR, BEAM-H, BEAM-V is always

valid. The following table is an example for an output of a backend configured with 9 dual polarization

antennas and 16 Correlation products for both polarizations.

Offset
Size

(Byte)
Name Description

0 8 PKt_Counter The counter of the packet

8 4 IM_Auto-H001 Imaginary part of the autocorrelation of antenna H001

12 4 RE_Auto-H001 Real part of the autocorrelation of antenna H001

16 4 IM_Auto-H002 Imaginary part of the autocorrelation of antenna H002

20 4 RE_Auto-H002 Real part of the autocorrelation of antenna H002

24 4 IM_Auto-H003 Imaginary part of the autocorrelation of antenna H003

28 4 RE_Auto-H003 Real part of the autocorrelation of antenna H003

32 4 IM_Auto-H004 Imaginary part of the autocorrelation of antenna H004

36 4 RE_Auto-H004 Real part of the autocorrelation of antenna H004

40 4 IM_Auto-H005 Imaginary part of the autocorrelation of antenna H005

44 4 RE_Auto-H005 Real part of the autocorrelation of antenna H005

48 4 IM_Auto-H006 Imaginary part of the autocorrelation of antenna H006

52 4 RE_Auto-H006 Real part of the autocorrelation of antenna H006

56 4 IM_Auto-H007 Imaginary part of the autocorrelation of antenna H007

60 4 RE_Auto-H007 Real part of the autocorrelation of antenna H007

64 4 IM_Auto-H008 Imaginary part of the autocorrelation of antenna H008

68 4 RE_Auto-H008 Real part of the autocorrelation of antenna H008

72 4 IM_Auto-H009 Imaginary part of the autocorrelation of antenna H009

76 4 RE_Auto-H009 Real part of the autocorrelation of antenna H009

80 4 IM_Auto-V001 Imaginary part of the autocorrelation of antenna V001

84 4 RE_Auto-V001 Real part of the autocorrelation of antenna V001

88 4 IM_Auto-V002 Imaginary part of the autocorrelation of antenna V002

92 4 RE_Auto-V002 Real part of the autocorrelation of antenna V002

96 4 IM_Auto-V003 Imaginary part of the autocorrelation of antenna V003

100 4 RE_Auto-V003 Real part of the autocorrelation of antenna V003

104 4 IM_Auto-V004 Imaginary part of the autocorrelation of antenna V004

108 4 RE_Auto-V004 Real part of the autocorrelation of antenna V004

112 4 IM_Auto-V005 Imaginary part of the autocorrelation of antenna V005

116 4 RE_Auto-V005 Real part of the autocorrelation of antenna V005

120 4 IM_Auto-V006 Imaginary part of the autocorrelation of antenna V006

124 4 RE_Auto-V006 Real part of the autocorrelation of antenna V006

128 4 IM_Auto-V007 Imaginary part of the autocorrelation of antenna V007

132 4 RE_Auto-V007 Real part of the autocorrelation of antenna V007

The Data Set

 41

136 4 IM_Auto-V008 Imaginary part of the autocorrelation of antenna V008

140 4 RE_Auto-V008 Real part of the autocorrelation of antenna V008

144 4 IM_Auto-V009 Imaginary part of the autocorrelation of antenna V009

148 4 RE_Auto-V009 Real part of the autocorrelation of antenna V009

152 4 IM_Cross_V003_V008 Imaginary part of the cross correlation V003_V008

156 4 Re_Cross_V003_V008 Real part of the cross correlation V003_V008

160 4 IM_Cross_H001_H008 Imaginary part of the cross correlation H001_H008

164 4 Re_Cross_H001_H008 Real part of the cross correlation H001_H008

168 4 IM_Cross_V003_V007 Imaginary part of the cross correlation V003_V007

172 4 Re_Cross_V003_V007 Real part of the cross correlation V003_V007

176 4 IM_Cross_H001_H009 Imaginary part of the cross correlation H001_H009

180 4 Re_Cross_H001_H009 Real part of the cross correlation H001_H009

184 4 IM_Cross_V007_V002 Imaginary part of the cross correlation V007_V002

188 4 Re_Cross_V007_V002 Real part of the cross correlation V007_V002

192 4 IM_Cross_H009_H003 Imaginary part of the cross correlation H009_H003

196 4 Re_Cross_H009_H003 Real part of the cross correlation H009_H003

200 4 IM_Cross_V007_V005 Imaginary part of the cross correlation V007_V005

204 4 Re_Cross_V007_V005 Real part of the cross correlation V007_V005

208 4 IM_Cross_H009_H004 Imaginary part of the cross correlation H009_H004

212 4 Re_Cross_H009_H004 Real part of the cross correlation H009_H004

216 4 IM_Cross_V007_V006 Imaginary part of the cross correlation V007_V006

220 4 Re_Cross_V007_V006 Real part of the cross correlation V007_V006

224 4 IM_Cross_H009_H005 Imaginary part of the cross correlation H009_H005

228 4 Re_Cross_H009_H005 Real part of the cross correlation H009_H005

232 4 IM_Cross_V007_V009 Imaginary part of the cross correlation V007_V009

236 4 Re_Cross_V007_V009 Real part of the cross correlation V007_V009

240 4 IM_Cross_H009_H007 Imaginary part of the cross correlation H009_H007

244 4 Re_Cross_H009_H007 Real part of the cross correlation H009_H007

248 4 IM_Cross_V007_V001 Imaginary part of the cross correlation V007_V001

252 4 Re_Cross_V007_V001 Real part of the cross correlation V007_V001

256 4 IM_Cross_H009_H002 Imaginary part of the cross correlation H009_H002

260 4 Re_Cross_H009_H002 Real part of the cross correlation H009_H002

264 4 IM_Cross_V003_V004 Imaginary part of the cross correlation V003_V004

268 4 Re_Cross_V003_V004 Real part of the cross correlation V003_V004

272 4 IM_Cross_H001_H006 Imaginary part of the cross correlation H001_H006

276 4 Re_Cross_H001_H006 Real part of the cross correlation H001_H006

280 4 IM_Beam-H Imaginary part of the BEAM-H

284 4 RE_Beam-H Real part of the BEAM-H

288 4 IM_Beam-V Imaginary part of the BEAM-V

292 4 RE_Beam-V Real part of the BEAM-V

The yellow records on the above table (of length 36 = 9 AutoH +9 AutoV + 16 Correlations + 2 Beam)is a

repetitive part on the UDP packet data field. The packet size should be a multiple of this number, the

explanation has been given in the previous chapter talking of the packetizer block that sends a new packet

counter one clock after the 10 Gbit end of frame signal.

UDP packets data format

42

The packet size used for the MAD3 experiment was 648 (words of 8 Bytes, 5184 Bytes) that means there

are 648/36=18 blocks of data in each packets. The packet size parameter must not take into account of the

packet counter. Since the period of each spectra is 1/(40MHz/2048 (fft real sample))= 51.2 microseconds,

the period of one packet is 51.2 *18 =0.9216 milliseconds. Combining this information with the t_zero field

of the output file header and the counter of each packet you have the timestamp of each data. The counter

of the packet is also useful to know if there are some missing packets.

Offset
Size (word
of 64 bit)

Name

0 1 PKt_Counter

1 36 Data set #1

37 36 Data set #2

73 36 Data set #3

109 36 Data set #4

145 36 Data set #5

181 36 Data set #6

217 36 Data set #7

253 36 Data set #8

289 36 Data set #9

325 36 Data set #10

361 36 Data set #11

397 36 Data set #12

433 36 Data set #13

469 36 Data set #14

505 36 Data set #15

541 36 Data set #16

577 36 Data set #17

613 36 Data set #18

The software that will receive data from the UDP socket will have to read 648+1 words of 8 Bytes.

Firmware Antenna Map

 43

Mapping Antenna/Rx/ADC
The map of the configuration is written in several file.

Firmware Antenna Map

These files create an association between MAD antenna nicknames (Pol+Ant number) and the Firmware

antenna Numbering (aka Feng numbers).

oper@fahal:~/MAD4$ more mad_pol_h.conf

H001=8

H002=15

H003=13

H004=10

H005=14

H006=24

H007=11

H008=12

H009=9

oper@fahal:~/MAD4$ more mad_pol_v.conf

V001=7

V002=5

V003=0

V004=16

V005=2

V006=6

V007=1

V008=4

V009=3

BEST Receivers Map

This file create an association between the name of a BEST Receivers (first column) and the Slave ID for the

Carrier RS485 communication (last column).

oper@fahal:~/MAD4$ more rx_map_best.txt

1N-1-1 0 0 11

1N-1-2 0 0 12

1N-1-3 0 0 13

1N-1-4 0 0 14

1N-2-1 0 0 21

1N-2-2 0 0 22

1N-2-3 0 0 23

1N-2-4 0 0 24

1N-3-1 1 1 31

1N-3-2 1 1 32

1N-3-3 1 1 33

1N-3-4 1 1 34

1N-4-1 1 1 41

1N-4-2 1 1 42

1N-4-3 1 1 43

1N-4-4 1 1 44

1N-5-1 2 2 51

1N-5-2 2 2 52

1N-5-3 2 2 53

Mapping Antenna/Rx/ADC

44

1N-5-4 2 2 54

1N-6-1 2 2 61

1N-6-2 2 2 62

1N-6-3 2 2 63

1N-6-4 2 2 64

1N-7-1 3 3 71

1N-7-2 3 3 72

1N-7-3 3 3 73

1N-7-4 3 3 74

1N-8-1 3 3 81

1N-8-2 3 3 82

1N-8-3 3 3 83

1N-8-4 3 3 84

MAD Receivers Map

Following the previous configuration file here the link between MAD antennas and RX Carrier Slave ID.

oper@fahal:~/MAD4/bee2$ more rx_config.txt

H001 8 0 44

V001 7 0 51

H002 15 0 84

V002 5 0 52

H003 13 0 81

V003 0 0 41

H004 10 0 82

V004 16 0 11

H005 14 1 71

V005 2 1 64

H006 24 1 83

V006 6 1 73

H007 11 1 24

V007 1 1 23

H008 12 1 43

V008 4 1 61

H009 9 2 54

V009 3 2 62

Network Receivers Map

Here the IPs list of the Receiver carrier boxes.

oper@fahal:~/MAD4/bee2$ more rx_network.txt

192.168.69.1

192.168.69.2

192.168.69.3

192.168.69.4

Network Receivers Map

 45

Acronyms
ADC Analog to Digital Converters

BEST Basic Element for SKA Training

FFT Fast Fourier Transform

MAD Medicina Array Demonstrator

PFB PolyPhase Filter Bank

RX Receiver

SKA Square Kilometer Array

UDP User Datagram Protocol

