A
&\ Y

*

%
g}
® -
h
E
VQ

D\ AS TQ
< O.

L 2

2 o

b
NojzyN

A Digital Backend for the

Medicina Array Demonstrator

A. Mattana

IRA 508/17

Istituto di Radio Astronomia, Bologna, INAF

Referee: Marco Poloni

INDEX .eeeueeiiennerrennereennereenssersenssessenssesssnssesssnssesssnssesssnssesssnssesssnssesssnssssssnssesssnsssssanssssssnssssssnssssssnssssssnsssssannssesannsessannane 3
INTRODUCGTIONitteniiireenertennseereesersenssessenssesssnssesssnssesssnssesssnssssssnssssssnssssssnssesssnssssssnssssssnssssssnssssssnsssssansssssansssssannsne 5
HARDWVAREccucttuitenereenerencreenerenceeescresesessesassssssessssesssssssssssssssssessssssnsessssssssessssssnssssssesnsssassesnsssassesnsesansesnsssnnsesnsssnnne 6
SYSTEM REQUIREMENTS ..vtuueeeeeeetteuusaeeeeesssseneseseeesssssnnsesesssssssnnnseeessssssnssnseeessssssnsssesessssssnnsesesssssssnnnsesessssssnnseeeessssssnnseesesernes 6
REAL TIME POWER COMPUTING ...ceeiiiiiiiiiiiieiiieeeeeee ettt ettt ettt e e e et e e e e e e e et e e e e e e e et e e e e e e e e et eeeeeeeeseseeeeeseeeeeeeeeeees 7
LY 5 L O RRRT 8
FIRMWVARE ... iiteiiiitiniiiieenieiteenieitensietsensietssnssstsssssesssssssssnssssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssansssssannnns 10
DIGITALIZATION
SYNCHRONIZATION
FREQUENCY CHANNELS ..vvuuueeeeesetreuuueeeeesesssnnaseesssssssnnsesessssssssnnseeessssssssnnsesessssssnnnesessssssssnnsesessssssnsnnsesessssssnnsesesesssssnnnaeseessnes
AMPLITUDE EQUALIZATION ..iieeitiiieeeeeeeeeteteeeeeeeeeettaeeeeeeseessat e seeesessbanaesesssssssannsesesssssstannesesssssasannsesesesssssanesessesesssnnnneees
INSTRUMENTAL PHASE CALIBRATION
THE B4 BIT SYSTEM..etvutuuuieeeiereruuueeeeereeersseieseeesesssaseeeeeesssssssnesessssssssnnesessssssssnnsesesssssssannsessssssssnnoesesessssssneeeesssssssnsneeessseees
CONTROL SOFTWAREcceuueittenierteenereensiereenseereenseerensssssesssessssssessenssesssnssssssnssssssnssssssnssssssnssssssnsssssanssssssnssssssnssessanssenee 28
Y S TEM START UP cetiiiiiiiiiiiiieee ettt e ettt ee e e e e e et et s e eeees e e s b aa e seeeseeasa s teeesessbaaassseesssssbannssesssssstannseesessssnsaneseesesessnnnns 28
CHECK ANTENNA POWER...1uuutuuuuuuutsuussssssssssssssssssssssssesssnnnns 32
(oYY N 00 = ol 4 N P 34
PLOT INSTANTANEQOUS SPECTRA ..ettuuuueeeeeetttuneeeeeresssenaesessssssnenasesessssssssnasesessssssnnsesessssssssnnsesessssssnsnnsesessssssnseseesssssssnnaesesssses 36

SAVE RAW DATA....
o YNV B .Y PPNt
UDP PACKETS DATA FORIMAT ..c.uiiteiiiiieenieiteeniensensierssnsssssssssessssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnnsssssnsssssannnns 40
THE DAT A SET ciiiietiiitieie et eeeettt i ieeeeeeetttataeeeeeeesasana e seeesssasannssseeesssssannsaseessssssnnnsesesssssssannsesessssssnnnnseesssssssnnneseessssssnnnneeeesnnes 40
MAPPING ANTENNA/RX/ADCcccciirrerreeerreeesssssrseeeesesssssssssseessesssssssssssssssesssnsssssssesns 43
FIRMWARE ANTENNA IVIAP ... eetttiiee et eeeettteie e e e e eetatt e eeeeeeeasataaseeeesaassnanseeessssssnnsasesssssssannsseesessssnnnnsesesessssnnnnseeesssssnnneeseeesses 43
2] oY I e A Y Y Y U 43
IMIAD RECEIVERS IMIAP .t eeeeeeetttiie e e e eeeettteeeeeeesesataaaaesesseasasannseaesssssssannsaeessssssnnnnsesssssssnnnsesesesssssnnnsesessssssnnneseessssssnnneeeeeesses 44
NETWORK RECEIVERS IMIAP ...ttt e et e et e e e e e e e e e e e e e e e e e e et e e e e e e et e e e e e e e e e e e e eeeeeeeeeeeeereeareraeaeenens 44
ACRONYIMS.....ceiiitieiirteenierteenereesseetensseerenssessesssesssnssesssnssesssnssesssnssessssssesssnssssssnsssssanssssssnssesssnssssennsssesennssessnnssesennssssanne 45

Index

Page intentionally left blank

Index

Introduction

The Medicina Array Demonstrator Project (MAD) consists in one of the first SKA precursor. It is a 3x3
regular Vivaldi dual polarization antenna array. The aim of the project is to measure the array beam pattern
by using an artificial radio source, a sinewave transmitter (TX) installed on a remote controlled hexacopter
(UAV) flying over the array. The MAD backend acquires the signal received from the antennas and provides
in output preprocessed data. These are the course frequency bin containing the TX signal. The rest of the
frequency bins are just throw to save data rate.

The MAD project and its results are described in details on other the technical reports:

- The 2nd measurement campaign of the Medicina Array Demonstrator, G. Pupillo, G. Naldi, A.
Mattana, J. Monari, F. Perini, M. Schiaffino, P. Bolli, G. Virone, A. Lingua, IRA 479/14

- Medicina Array Demonstrator: Overview and Results of the third campaign, G. Pupillo, G. Naldi, A.
Mattana, J. Monari, M. Poloni, F. Perini, M. Schiaffino, G. Bianchi, P. Bolli, A. Lingua, I. Aicardi, H.
Bendea, P. Maschio, M. Piras, G. Virone, F. Paonessa, Z. Farooqui, R. Tascone, A. Tibaldi, IRA 482/14

The MAD Project ended in late 2014. The Backend Firmware and all the software have been maintained
afterwards to be able to complete some scientific test such the phase closure measurements done many
months later.

| started writing this document in 2015 but | finished writing only in 2017 because of the numerous work
commitments.

Hardware

Hardware

System Requirements

The digital backend for MAD experiment (Medicina Array Demonstrator) has been developed using the
ROACH-1 CASPER board (Reconfigurable Open Architecture Computing Hardware, see IRA 462/12 and
https://casper.berkeley.edu/wiki/Hardware) which is a VIRTEX 5 FPGA populated of many peripherals such
4x CX4 10Gbps high-speed serial connectors, 10/100Mbit RJ45 Ethernet, DDR2 DRAM DIMM, 2x 2M x 18-bit
QDRI+ SRAMs and much more.

apul
- granch ou B%E g
¢ Cowe\a"“;ms EE%
Bits
3/.‘53@:“ Data Storage Computer
Mb Ethernet Switch

—_—»
IF Inputs : ‘
—’,
¥ 4 ADC
ROACH Board
‘V 40 MHz Sl >
=~ Clock Signal

Clock Generator 10/100 Mb
locked to Maser Ethernet Switch Real-Time Control
and Monitor Host Computer
PPS Signal P

The overall backend architecture is represented above. The IF analog signals arriving from the MAD optical
receivers are sampled by the ROACH’s ADC, then an onboard processing logic computes the FFT and makes
auto correlations and cross correlation products of the interested frequency channel and the beam formed.
These data arrives to the storage system via high speed 10 Gbit/s links, while the management is driven by
a separate Ethernet link.

The clock generator as well as the computers (through a NTP server) are synchronized using a ultra-stable
10 MHz reference sine wave and PPS signal provided by the MASER Atomic Clock.

The management computer is a NFS server for the ROACH 1 that expects to boot its operating system via
network, it is a UBUNTU LINUX OS 12.04 equipped with 2 networks card adapter, one for the public
network and the other one for the ROACHSs private network. It provides also IP numbers as DHCP for the
ROACHs. The communication with the ROACH has been developed with the PYTHON programming
language using a set of Python modules (primitive) provided by the CASPER community that allows to
interact with the ROACH FPGA internal registers.

The storage system is a workstation equipped with a set of disk configured in RAID-0.
The Clock generator is the Rohde & Schwarz SMX Signal Generator 100kHz-1000MHz.

The 10 Gbit Ethernet Switch is the Fujitsu XG 700 with 12 CX4 ports.

https://casper.berkeley.edu/wiki/Hardware

Real Time Power Computing

Real Time Power Computing

The aim of the Digital Backend is to acquire analog signals coming from the Vivaldi antenna array on the
field and to produce in output the result of the Beamformer and the FX-Correlator computed aboard. Two
independent parts of the firmware will produce output of 32 bit and 64 bit to allow the study of some
qguantization effect over the digital chains. The firmware has been designed starting by an already tested
part which is a F-engine working as follow:

1. The 64ADCx64-12 board (https://casper.berkeley.edu/wiki/64ADCx64-12) samples 64 analog signals
at the same time and gives the 12 bits values to the FPGA in 4 clock cycles (16 per clock cycles in
serial).

2. The FPGA, that is at least 4 times faster than the ADC clock rate, takes 32 time domain antenna
samples and implements a digital Polyphase Filters Bank and the FFT to produce frequency
channels.

3. Each frequency channel can be equalized in amplitude with a gain factor and calibrated in phase.

Every computations of each stage (PFB, FFT, AMP, PHASE)* produce values that need to be represented
with a small number of bits to save FPGA resources. There are two independent branches of the same
project taking these values: a 32 bit system customized for the MAD case (9 dual pol antennas), and, a 64
bit programmable system.

* PFB=Polyphase Filter Bank, FFT=Fast Fourier Transform, AMP=Amplitude equalization, PHASE=Phase calibration

Hardware

ADC

The ADC is the 64ADCx64-12, 64 inputs, 64 Msps, 12 bit, double wide board (it uses both the 2 ZDOK
connectors) developed by Rick Raffanti. The next picture shows the ADC board, you can easily distinguish
the 8 ADC chips (8 input each), the two ZDOK connectors at the top, few input ports on the right used to
get differential sync signal (PPS) and a small connector at the bottom which links the analog inputs through
a flat cable (see also the previous picture).

The next picture shows the rear of the ROACH boards rack where you can see the blue flat cable in details
ending in a small printed circuit boards whit about 80 coaxial cables with SMA connectors for the analog
inputs (antennas and sync signals).

R . -

ADC

The next picture shows the cabling, the black coaxial cables are the input signals coming from the optical
receivers (16 MHz of bandwidth centered at 30 MHz), the metallic boxes are some splitter used to close to
50 Ohm a set of unused ADC inputs.

Firmware

Firmware

Digitalization

The MAD3 firmware has been developed using the Xilinx System Generator® running in Mathworks
MATLAB® that allows to convert a Simulink® model file (which consist of simply block diagrams) in VHDL
code. Thanks to the CASPER engineering group that has developed the ROACH board there are many
custom library block sets to address all the Xilinx Virtex5® peripherals available, and some software to
compile the project file directly via the MATLAB command line that calls the XILINX ISE Suite® and produces
the FPGA bitfile.

We have already produced a firmware for the MAD2 test campaign that was customized for a minimal set
of correlations and for just one polarization because the transmitter aboard the UAV is a dipole
transmitting in one polarization. That firmware allows a limited set of data analysis but was very efficient in
terms of data rate and data volume produced. The idea of the MAD3 firmware is to improve the capabilities
such acquire the two polarization at the same time which allow imaging analysis, and improve the bit
guantization to investigate better some feature of the data, unfortunately all the changes increase seriously
both the data rate and the data volume.

There are common parts between the old and the new firmware: the digitalization of the analog inputs, the
channelization from time domain data to frequency channels, the amplitude equalization and the phase
calibration. Even the backend control registers are shared between firmwares.

5’ HESEE
~ ROACH

System ¥5G core config revision_control [uhite_noize] Boal

Generator
. Fixf12 11
[debug._sige] Bool [adc0_3_in] m Fix 12 :]
: P d adcO_3_inl
) Fiw 12 1 Noise_Outll Fix 8.4 F P ‘r-l
sin0 do z1 [adc0_3_in] coclio 11
Fix 12 11 i [aded_7_in] b
o dout _ — 1 m Fix 12 Laded_7_ind]
Moise_Outl? MFIX 8.4 F e =

doutl

e 5
<in2 wop 71 (Fix 1210 Laded_7_in]
Fix 1211 »s

dout? [ades_11_in] == e Fix 12 STRTRT
sind Fix 8 F g Fa orjad
se ; Noise_Dut13 1]

sind outs wdo 51 (P12 o Fogeq 11 in)
Fix 12 11 » [adc12_15_in] > 1%L

doutd

. | Fix 12 ,
imG ; e m [adc12_15_in1]
douts Moise_Outld Fix 8.4 F fzstd Fix ‘r-l
Fix

e i
sind sy 71 (Fix12 [adc12_15_in]
Fix 1211 »3

Bool ™reset [2dc16_19_in

in7 douth twhite_noise_r‘st]
dout? sel iy 121 Moize_Out2l Fix 8_Q F ot Fix
sing . mdl z [adc16_19_in] .
s doutl oy | i [3dc20_23_in] == U
sin : o ok
doutd =8 Fix 12 Moize_Out2? Fix 8.4 F fzit] Fix
. wdy =1 [ade20_23_in]
e Fictz 1 | "y = [adc2d_27_in] == *
o dout0 Fix 12 11 27
P X Fix_8_4 FigzaqFix
o " Moize_Out23
it doutil Map 7 [FL2 Ly o Tadood o7 in]
dout1s Fix 12 11 Ll
ziml3 _
[doutl3 m R R 2dcoE 3lin Moize_Out24
doutld .] - Gauzsian Random Mumber
ziml5 Generator
Hzim_sync doutds » 1 UF4x 8.0 w 1 UFix 8.4 [adec_chan_sync]

chan_sync x84
Hadc_rst [ade_chan_synci]

x64_adc

10

Synchronization

The ADC yellow block is a Simulink block written by the CASPER group that allows to address the ADC64in
board. It produces 16 digital output in a clock cycle and the 64 parallel outputs in 4 clock cycles. Running
the FPGA at least 4 times faster than the ADC board (which will have a dedicated synthetized clock signal)
you will be able to manage up to 64 different input. The format of the data is Fix_12_11 which means a
fixed point number of 12 bits with 11 bit of decimals.

Synchronization

The ADC block provides also the sync signal useful for the synchronization. A separate logic tests the syncs
of the 8 ADC chips on the ADC board and a python control scripts running during the initialization phase
test if the ADCs are aligned with the sync.

U:
HUt 1%
e S >
‘_ UF iyt ;ﬁut e {7 1.0 | Boal - Booly|, .
adc_chan_sy Tire i = or cast in out hi > Bool {Lade_erraor_led]
th MFTE — ar - -
Lty TFix B il
Outd ot 22
uncran
UFix 1.0
fope gl >0l o] -1 [ool
UFix 2 0

¥

req_sik_reg_out

an?
z

adc_sync_test

The adc_sync_test reg allows the
UFix uzer to confirm that all 8 ADC chips
HUE% Fix are syncing together, and that these
U ﬂt H x - Bonl Bobl ADC =yncs are arriving the clock before
‘_ g Tt 1= Jals} . ofl the master sync,
ade_chan_sy T%Ut H § an mn out, I If all is going well, the register zhould
Lth M z extZ show one
Qut? MFTs
Outd
urcraml
UFix 1.0 ConcatE

opergbeed :~/andrea/Teng/MAD3% ./mad start.py

Connecting to ROACH board named "feng"... ok
Deprogramming FPGAS
Programming feng with bitstream mad full corr 2014 May 13 2258.bof
Calibrating ADC on Teng
SUCCESS5: adc sync test returns (1
SUCCESS: adc sync test returns (1

1 ADC syncs present & aligned)

1
SUCCESS: adc sync test returns 1 (1

1

1

ADC syncs present & aligned)
ADC syncs present & aligned)
ADC syncs present & aligned)
ADC syncs present & aligned)

SUCCESS: adc sync test returns 1 (1
SUCCESS: adc sync test returns 1 (1

The ADC is locked to the two signals provided by the Maser Atomic Clock, a ultrastable 10 MHz sinewave
and a PPS. The host computer is synchronized via a local NTP server providing the station time. The station
time is a high precision clock locked again to the Maser 10 MHz sinewave and PPS, and verified periodically
comparing a time provided by a GPS receiver. During the initialization phase, after an ADC alighment test,
the host computer waits for a “new second” (having decimals parts less than 0.1s). This means a PPS signal
has been recently received from the firmware and then send a "sync arm" (labeled “arm rst” on the next
Simulink picture) signal to the firmware which arrives for sure within two PPS signals, the next PPS signal
arriving to the firmware will generate the master reset and will be the "t_zero" time of the firmware, that
time will be stored to local registers and attached to each observations file header. Each data packet has a
8 byte counter header which allows to know the acquisition time of each sample.

11

Firmware

Bog gpio_out sim_out

Constant2 gpio_a_oen

Hon 2°N periodst
fft mux —— 13
UDR transpose —— 11
post QDR reorder —— 10
reorder 1_ant_a_time —— 7
LCHE1Z,11,10,7) = 10010

double =im_in gpio_in—

edge_detect

Zonstant3 sync_gpio

falling edges

Bogl

P

Ligne_rst_led]]

o cast

active high

[sync_rst] paol

[aru_rst 1>

™ st

ol
rmed

sync [

mrzt

SWNC_gen

We tag on =zome logic after the
sync gen to ensure that a sync pulse
arrives the clock before the adc_channel
sync, which signifies the arrival
of the first multiplexed chanrel on the
adc lines

Csunc out Bool
™ adc_sync

adc_sync_align

Lot B

o
sync_out
adec_sihe

adc_sync_alignl

ledl

Frequency channels

led2

. glpio_outsim_out F
led3

[sync_gen]

The MAD3 science case is a regular array of 9 dual polarization antenna for a total of 18 input signals. The

polyphase filters and the FFT logic blocks are optimized to manage parallel streams of 2" inputs, that’s way

we will develop the system to manage 32 input. As you can see in the previous picture only the even output

(doutO, dout2, dout4...) have been used where each lines carries 4 interleaved time domain streams.

[sunc_gen] Bool Wizye sync_out. Eool -
B 7 Fix,
_adc0_3_ind il il 2
T P oot outt
0] e 1 ; o
¥ i F
ri_to_cl c_to_ril
Gl pfb_fir_mux =ht
taps=4, add_lat.er’n:g,j:}a-l7 /i

Bool
-—’ EUNC SYnc_out

ri_to_c3 SFb_Fir_mel c_torid

taps=4, adt:Llat,emcl‘-r—"ll‘a—:17 i

[fir_sync_outl

[Fir,sync,out]| [FirD 3 onil F.
B-1TF1r0_3_out]

fird 7 _out]

[Fird_7_outl-—Ed
£firf_11_cut]

£8r12_15_out]

kL
[Firi2_16_outd-
[Firi6_19_autt-D

Fir16_19_out]| [Fir2o_25_ouid

£Eir24_27_out]
£1r26_31_out]

[£ir24_27_oubd-

[fir28 31 outt=

ool
[SogEnc_out

o

ot
-2
L3
{rf-Lfued
F S W
T

fit* -t

b i)

N UFix 0.

5 [shift] shiift
Fix B 0 3_out]

i ey i
Fix 847 0 11 out]] [muxl? 15 oyl Fi |:-80'IJZZ

Fix gBeTia2 15 out]
Fix 40 46 13 out]
Fix Bl o0 23 out]

a

ata iz reordered =0 that an entire windou
can be shifted through the FFT

rusx_sunc_oufl= Boal sync
[shirt] ULl e
mux16_19_ou; prixdg
Fix 14
ix_18 24_07_ogl¥
Fix 04 27 _out] Frcee 27 oupy-Feti g
20 25 niEt-F -1

mec2_31_oupd- -l

syhc_out.

17

pol34_out
Sz

Bool

MU _SYhc_ou sunc
ayhic_out Eool [fft_sunc_out]
[T Fix 13 &0711 poli2_out iz 26§ [FFL0_7_out]
pol34 out 1236 [#18.15_out]
Lot 7 o p-Fidids
o (Raol TFft_af_0]|
fft_biplex_real _2x
Virtex5
l%igt?g?s Eooft reth Bt UFix
Round (unbiased: Even Valuegl aiy
Wrap Eul
Counterd

A0y pol1z_out B0 (e 23 out]
iz 2Ep) [#Ft24_31_out]

[Frt_of 1]

of

fft_biplex_real_2x1
Virtexh
11 stages

-—l‘-isuft_rs ass r“lst UFi

F

aut,

[18,18]
Round (unbizsed: Even Valuest
Wrap

en
CounterlQ

The CASPER green block of “pfb_fir” combined the “fft_biplex_real” implement a poliphase filter which

consist of: multiply the analog signal to a discrete SYNC wave that correspond to a convolution of a RECT in

frequency domain to filter each sub-band. The number of sub-bands and the number of the coefficients

describing the SYNC is customizable with the block parameters, the higher those numbers the more FPGA

resources is required. The Simulink block used for the PFB is a customized PFB version to use the ADC64in,

called “pfb_fir_mux” which takes care about the 4 clock cycles to have the next value of the same stream,

and, a reorder block is needed before the FFT block which expect to receive continuous stream of the same

time domain data stream to compute the discrete Fourier transform. The output of the FFT are the N

frequency channels of each input and one line carries 8 streams in the following order: 0-4-1-5-2-6-3-7.

The width of the data is set to 36 bit for the complex number (36 bit is the unit of the Xilinx Virtex5
registers) and the format is Fix_18 17 for both the Real and the Imaginary values. The number of sub-

12

Amplitude Equalization

bands in output from the FFT are 1024 (it is necessary to set both the size of the PFB and the size of FFT to

2048 points).

The order of the data leaving the FFT green blocks is as follow:

FFT_0_7_out
FFT_8_15_out
FFT_16_23_out
FFT_24 31 _out

CLOCK

AD-
X ment X mono X e >

AS-
Al12-Chl >< A12-ChO >< Ch1023 >-

Ale-
S >< sl >< Ch1023 >

A22-
28- 28
i >< e >< Ch1023 >

|

L

|

n+1025

n+1024

n+1023

>< AQ-Chl >< AD-ChO >

>< A3-Chl >< AS-ChO >

>< Ale-Chl >< Al16-ChO >

>< A24-Chl >< A24-ChD >

L]

L]

n+l

n

The next table shows an extract of the frequencies of each sub-bands, the left and right limits and the
center frequency of the first and the second harmonic. As you can see, the second harmonic has a reversed
order. The central sub-band of the 1024 FFT bins is the 512" which contains the frequencies around the 10
MHz and the 30 MHz.

Channel 1-Left 1-Center 1-Right 2-Left 2-Center 2-Right
508 9912109,4 | 9921875,0 | 9931640,6 | 30068359,4 | 30078125,0 | 30087890,6
509 9931640,6 | 9941406,3 | 9951171,9 | 30048828,1 | 30058593,8 | 30068359,4
510 9951171,9 | 9960937,5 | 9970703,1 | 30029296,9 | 30039062,5 | 30048828,1
511 9970703,1 | 9980468,8 | 9990234,4 | 30009765,6 | 30019531,3 | 30029296,9
512 9990234,4 | 10000000,0 | 10009765,6 | 29990234,4 | 30000000,0 | 30009765,6
513 10009765,6 | 10019531,3 | 10029296,9 | 29970703,1 | 29980468,8 | 29990234,4
514 10029296,9 | 10039062,5 | 10048828,1 | 29951171,9 | 29960937,5 | 29970703,1
515 10048828,1 | 10058593,8 | 10068359,4 | 29931640,6 | 29941406,3 | 29951171,9
516 10068359,4 | 10078125,0 | 10087890,6 | 29912109,4 | 29921875,0 | 29931640,6

Amplitude Equalization

The data streams reach 2 stages of multipliers that allow to equalize in amplitude and calibrate in phase the
antennas. It is possible to equalize and calibrate each frequency channel independently thanks to the
presence two BRAM (Block RAM of length 1024 each) which allow to load coefficients by the host
computer. Since the output of each multipliers has the bit width increased, a data cast (quantization) is

needed.

13

Firmware

0l g

1

syhc_in

rst. out

Counter

e
Lt

UFix 120 [a:b] UFix 12 0

Slice

addr

I:lwzdaoca_ in data_out

Constant

e

coeff_bram

. 2_1 Boo Z_B Bool .-
Delag? sync_out
Delay
UF'UFix ot |2 3600
i din dout
UFix 32 0 Telayl Wl ocalaf Bool » m
anp_zcale of

The previous picture show in details the amplitude equalization stage: going into the Simulink subsystem
you will find the BRAM yellow block, and another subsystem “amp_scale” making the multiplication.

There are two multipliers that computes the multiplication between the real and imaginary part of the
complex number (fixed point 18.17 each) of the frequency channel and a coefficient in the fixed point 32.16
format. The result is converted to a Fixed 18.17 again.

Fix 18 17 .
e Ll
o (ab)
. " _3
UF CEE_O Hult
din
. |Fix 18 17 -
im Lt
o {ab}
il
Hultl
c_to_ri
18_17 rdi
UFix LR Fix 33 16
interpry
zcale Reinterpret

Instrumental Phase Calibration

Fix 18 17

Fix g 33 dout 2 7

¥

e

N of

convert_of2
[50,33]-»[18,17]

Out
) dout. Fix 18 17 in
Fix Q22 Bool
of
convert_ofl
[50,33]1->[18.17]
ri_to_c
_b.
» T, of
all_0s

The phase calibration stage is similar to the previous stage without the “real mult” subsystem which is a
complex multiplication between the frequency channel and the phase correction loaded into the BRAM.

¥

-1 BDQ.]_ -5 B

ol g

rst out

1

sync_in

Counter

UFix 13 g UFix 12 0

Slice

Constant.

WE

addr

%é%a_in data_out

UFix 320

-

Z Z

UFix

din

sync_out

Delay2

5L
-0

Delay

UF iy
Ll

Delayl

P
Lt

coeff_bram

360

ah UF§

dout

c_mult

14

Instrumental Phase Calibration

The phase correction factor is a complex number having the real and imaginary part written has a fixed
point 16.15 each. The data output is a complex number where real and imaginary part have the format
35.32 each. This 70 bit number will be the final number which will be used for the auto correlation and
cross correlation products in the new firmware, while the old branch of the firmware will keep a quantized
data of 8.7 bit for real and imaginary part each.

L al
Fix_34_22
UFixg BE_ore inx_1e_1? wlp L0 b
I o R [JPRT: B =2 .
a Lm rere . Fix 35 32
c_to_ri - -z
1817 r/i v i z
1y i (ab) Fix_24 @b
=2
imim -
zub_re Fre c %
= im ah
) ri_to_c
{ab) Fix 34 g o
J: -2
ix 1B 15 imre Fix 38 32
UFix 22 0 Fe a+h
S [Ficbas ol 4
i z
c_to_ril » {ab Fin 24 g b
16_15 r/i T2
reim
add_im

Each stage of multiplier is grouped in subsystems and shown as in the follow picture in the top level
Simulink model file.

[amp_E0_0_7_out]

UFix 36 0
fFFt_sunc_out] —==Boolalene i dout wone in daut [IE-T00 peTphace F00_7_out]
sync_out. Bool [amp_EQ_sync_out]
FFEO_7_out [UFix 364 din o |Boal Lamp_of_01] *din sync_out Bool = Tphaze_E0_sync_out]
anp_EC0) phase_EQ0
Baal . UFix 360 FO_8_15_out i
San_ln dout <Lamp_E0_8_15_0ut] Wroyne_in dout UFix 700 phase_E0_8_15_out]
sync_out
UFi3,35, 0 |
[Ff8_15_out] §rn of Bool [amp_of_1] ®idin sync_out.
amp_E01 phase_E01
[FFt_sunc_out] sunc_in dout [amp_E0_16_293_out] Beunc_in dout, Ui 70 Oy o1 phase_E0_16_23_out]
sync_out
UFix 36 0
§I‘n of Bool [amp_of_2] Bdin sync_out
anp_EU2 phase_E02
[FFt_suno_out] == Eoo . dout |JF1x 360 anp_E0_24_31_aut] ;
[Fft_sunc_out] sync_in Munc_in dout IEEX 00 o o En o4 31 out]
Sync_out
UFix [y}
Bool < Lanp_of 31 .
i of Lanp_of 3] din syhc_out.
E0Z
anp_E(Q phase_E03

15

Firmware

The 64 bit system

The following scheme describes the “State Machine”: 32 streams of data are channelized and equalized.
Then the frequency channel bin containing the sine wave transmitted by the drone is cached by a
combination of FIFOs and a Dual Port RAMs.

ADC » PFB » FFT > EQ
SELECT
DRAM POL
AUTO CROSS BEAM AUTO CROSS BEAM
2 pol MAX 128 2 pol 1 pol 1 pol 2 pol
10 GbE 10 GbE 10 GbE
PKT PKT PKT

The first raw of the block diagram is the common part between the two independent systems producing
more or less the same output with different resolution (bit quantization). There are 4 parallel streams of
antenna spectra (organized by antennas and not by frequency channels) where few logic blocks catch the
512" channel where we expect to find the sine wave transmitted by the drone at 408 MHz.

16

The 64 bit system

out Uy

.. Boo Bool

edge_detect3
rizing edges
active high

[mrst] Baol

d

edge_detect30
rizing edges
active high

[started]

rStz_l q Boo

Y¥YYY¥Y

en
Regizterlf

Preq_out =im_out UFix 3 I

running

The edge detect green block (set to rising edge, active high) over the 10%" bit of a 13 bit counter (that counts

from 0 to 8191) generates the FIFO write enable signal. It will produce a one clock high level signal every

1024 clock cycle (each spectra is composed of 1024 frequency bin), starting from the first 512%™ channels.

The master reset of that counter is aligned with the sync signal escaping from the last equalization block to

ensure that the first sample is the frequency channel #0 and aligned with the timestamp of the first spectra
saved in the header BRAM.

The 32 frequency channels reach the 4 FIFOs (4 streams of 8 spectra each) in a window of 8192 clock cycles

then few logic blocks allow to empty one FIFO at a time shortly afterwards in order to save that data into

two twins Dual Port RAMs.

[mrst] “——spst
data
[Lrun] =>—n
=sim_datal
phase_E0_0_7_out] a(i]
[data_0_7]
Mu=34

[data_0_7]

<Tstrean_0_7]]

[Iorst] “=—+pst
data
[Lrun] “=>=—n
zim_datal
phasze_E0_8_15_out fald}
data_8_15]
M35

data_8_15]

g,

[ztream_8_15]

Mux36
din dout—+=" [fifo_0_71] [[data_2] din dout
' e empty ue empty
e 2Rull e #Full
[(Torst] —=—pst full [Clorst] “=——srst full
FIFO_L FIFD_2

17

Firmware

[mrst]
[Fifo_read_done

20 L < [read_fifa]
st
aut =] r
[fifo_wr] B [a3 — 1 [ram_ur] |
Latency in emptuing FIFD 32 clk cucles Lsoft rst]= ﬁgut‘_ﬂﬁgggggggf——'fﬁ
fi
Counter3n ran_ur
Lj{EJ [write_addr] |
E [fifo_read_done]
[Tnrst] “m—spst
- out ——"'l ath L N
[Pead'FlFD] n [:zﬂ biq? | and fifo_read_1]
&
[:ﬂ quP L] gt [fifo_read_2]
[:EH p3 L] fifo_read_3]
—a
Ca—ks® [2 fifo_read 4]
[T
[fifo_0_7]
< [Fifo_datal
fifo_16_23]=
Fifo 24 311>

The next picture shows the result using the simulation logic blocks instantiating a constant number for each
spectra in the right order. Considering the latency clock cycles when reading data from a FIFO, the 32
frequency channels stored in the DRAM is a ramp between values 0 and 31.

read_fifo

Fam_wr

18

The 64 bit system

Each dual port RAM contains the same values at the same address. Each address represents the index of
the data stream that is the antenna number. Due to the structure of the parallel FFT a remap of that
addresses is needed. The choice to have 2 twins Dual Port RAM is to extract 2 factors at the same clock
cycle for the Cross-Correlation engine, while, the choice of a Dual Port (whit respect to a simple RAM)
allows to run other engine at the same time, the Beam-Engine and the Auto-Correlation engine (that work
using the same input).

Write period 8192 clk cycle 111

UFD‘ a0 - f drives ¥ engine (a factor)
UF1>< 00 dina B UFisx_70_0) [data_al] |latency 2
i wea B drives AutoX and B engine
[ram_addr_bh] UFix 5 0_ addrb _ {=can all H pol)
o il ppHEix 704 [data_bl]
Oﬁgglweb
Dual Port RAM 1
UFD‘ a0 - f drives ¥ engine (b factor)
Wi 700 aging ppUriz-r0g [data_a2]
fool ea
Tram addr_bv] UFix 5 0 - ddrh B dmu(esscaﬂnutaol){l al\llr'u:IDB1)englne
o Ehaff” pfHEis-r0 [data_b2]
leguweb

Oual Port RAM 2

latercy 1

Two multiplexer change the source of the address line of DRAM port A for write operations and read
operations.

sel [[ramur] =
[read_addr_a] 10 [ran_addr_a1]] tread_addr_b] [ram_addr_aZ]
[urite_addr] dl [write_addr]

o _addr_A Mo _addr_B

This system has been designed to work with dual pol antenna and produces in output the sequence of all
the Auto-Correlation data (both pol-H and pol-V), the user defined Cross-Correlations and the total Beam of
each pol. The Correlations set to be computed is loaded by the user into FPGA BRAMs called “A_Factor”
and “B_Factor” and it is the complex multiplication between A and the conjugate of B.

That BRAMs as well as the two BRAMS “pol_h"” and “pol_v” contain the values of the addresses of the
interested antennas that must match the ADC inputs where the MAD antennas have been connected. The
firmware can only read values from the BRAM (see the write enable signal of the BRAM always set to zero),
while the user can write to them via Ethernet. The width of the BRAM values is 32 bit, due to the limit of 32
antennas a slice of the last 5 bits provides the range values of 0-31. The size of the BRAMs is the minimum
instantiable that is 1024 nevertheless further logics set the real maximum limit to 128, that means, there is
not allowed ask to compute more than 128 Cross-Correlations or Auto-Correlation.

19

Firmware

[bram_addr] addr
data_in data_out [read_addr_b]

WE

bram_pol _addr addr
ljl—'data_in data_out[—*h:b]] [ram_addr_bw]

e

Ebran_pol_addr] _=—+laddr [lbran_addr] _—=>=faddr
Dl—'data_in data_out Ijl—'data_in data_out
[:::::}————*ue [:::::}————'we
pol_h A_Factor
latency 1

i

pol_w B_Factor

This limit has been fixed in order to do not exceed the 10Gbit packets volume limit for the 64 bit size of the
output data, and, to fit the data rate allowed by the host computer that receives these packets that has
been properly configured and equipped with a set of disk in RAID which guarantees write speed of about
350MB/s.

There are two software register into the FPGA firmware that store the number of the antennas used (that
means the number of ADC input signals used) and the number of the correlations that have to be
computed. These two numbers tell the firmware how many iterations must be done to extract valid data
from BRAMs.

When the DRAM write enable goes down the computation engines starts. The DRAM output port A gives
values for the X-Engine (correlation products) while the output port B values for the Beam-Former and
Auto-Correlation products. The address lines A and B of each dual port must have the correct address of
each factor. An additional logic (shown in the next pictures) must generate the address line for the BRAM
to output valid addresses for the dual port RAMs.

[mrst] Bool Fool
ool g_r‘o
Edge_detecth
Bionl ——Eonl flalling edges
| Lot or] edg—na1_d;t_ect4 active high _:d =1 Bool
- stz
falling edges 8 %

active high

=t ;
UF i, 52
= - Bool] al
U b g&? w7

&

[[mrst] fiool Bool

—bool gro

gdge_detectl3
falling edges

[Cranor] e-Besl yfnioo] R N

edge_detectl12 stz Ll g =

falling edges
active high

320

=t ;
Bool out. UF i, 32 [bram_paol_addr]

zim_in reg_in

n_ant

20

The 64 bit system

As seen in the above pictures, “bram_pol_addr” and “bram_addr” values are the addresses for the BRAM,
while BRAM output signals called “ram_adrxxx” are the addresses for the dual port RAMs.

Each engine receives the respective input data and takes different latency for the computations depending
on the complexity. The easiest engine is the Beam-Former that makes a complex sum of each antenna
frequency. This is done using a simple Xilinx Accumulator block which needs to be reset to zero value at
least a clock cycle before the first valid data is present at the input port “b”. The sum must be enabled
rising a “en” signal in line with the input data and the result of the sum is available after a clock cycle.

Beamformer Engine Pal H

. Fix_3&_32
|[data_b1] UFix 700 1 ~q [UFix 7 E qﬁ ix b .
c_to_ribh Fix_43_32 |, dout Fix 5221 [beam_h_re_datal
3532 /i &a - clBool =
Bool . t_ofE
b convert_or
[Lo-run] - [43,321->[32,21]
Real Acc
latency 3
latency 1
b
1 |Bool Bool Fix 43 32 | dout [beam_h_im_data]
z | rst g din Baol
of &
edge_detectb convert_of7
falling pdoes [43,32]->32,21]

Imag Acc

The output of the accumulator which grows up a bit for each sum (worst case) must be quantized due to
the limited bandwidth. We have decided to have an output beam formed made by 64 bit for the complex
number (32 for the Real part, 32 for the Imaginary part).

The same antenna frequencies signals go to the Auto-Correlation product. It is a complex multiplication
between a value and complex conjugate of the same value done by the green block on the left of the next
picture where the upper engine computes the polarization H and the lower engine the polarization V.

21

Firmware

Bool

| [mrst]
UFjx 1.0

[[sin_data)

<t .
) out. UF; F‘eg&lﬁnut U 2.0
Er auto_h_ve

Counter32
Bool

[databl] UFix 70_0 1 |UF, [data_bl_auto] | Boo
4_0 i edoe_detect gt or 34 tO-"-notenpty
) o uto H engine falling edges
Tdatast] WFix 70.0 [Jufi 700 active high
32 % 3532 =) 3225 i UFix 64 g [auto_h datal |
truncate, saturate 31 din dout suto_h_data
Latency=10 B
o) &
[data_bl] EH AU 840]
Slicelfl | re #full
‘[autn_run] Bool I'?H?ool IWBDDI 1 Boo llool =) Bopl
== =] rst full g
fauto.h.read.cn] ~>-Eo0l FiFo_ o
rising edges
dctive high
B
.]
| [sin_datal e)

t
Counterz3 auto-run
[data_b2] UFix 70_0 -1 UF i I'O Auto Y engine
8 Fix_B4_0
[databp] _>-UFLCT0.0 [T |UFix 40 gin dout
* == Bool
® 32 * B3R = 225 D
Later’1c>g=10 .
Slicel st full
[Tawtorun] >>Bool 73 |Bool [10 | Bacl 71 |Boo\ [T AT |Beol 1 | ol FIFo

T

Each single result is stored to a FIFO ready to be sent to the 10 Gbit packetizer. A “FIFO Empty” signal will
tell if the FIFO is empty or there are still complex values to read. The X-Engine that computes the cross-
correlation products (interference fringes) is equal to the previous engine unless the product factors are
not the same values but the frequencies of different antenna of the array. In any case, the output of the

green block is internally quantized to match the 64 bit constraints.

UFix 1.0

| [sim_data]

[

UFix_64 Q[=7 UFix
L o]

| [data_all UFix 70 0 1 JUbix g L

[data_a2] UFix 700

1 [UFix g

'UO

engine

30_32 * 3532 ==> 3225 UFix Bd 0
truncate, saturate din dout [[x_datal
[data bl] UFix 70_0 UF s JU T IZI?—‘ EF OURix_B4_0 Baol
Sliceld -y G X_npty
e Efull
_run] Bool ~2 |Bool "~y |Boal ~1 |Bool ™1]Baol W A1 |Bool . cull
s u
| [x_read_en] Bool FIFO_¥
|

feol

These engines run for a short period because it works with input buffered data. The next set of products (or
accumulations in case of the Beam-Former) will be available in about 8000 clock cycles. That sounds like
there is enough time to make thousands computations, but the data rate and the data volume of the
output data saturate the output bandwidth (especially using 64 bits). We have chosen to limit to a
maximum of 128 Auto-Correlations and 128 Cross-Correlations products. For the MAD test case those
numbers guarantees to acquire the 9 dual polarization antennas with the full correlation matrix (9 Auto-H,
9 Auto-V, 36 Cross-Correlations and the 2 Beams of H and V). The next picture is very interesting shows the

burst of data every 8192 clock cycles.

22

The 64 bit system

ah_read

av_empty

d

w_empty

P BN

All engines have finished to compute their products and now the FIFOs are full of data and must be
emptied. A few logic blocks produce, in sequence, the read enable signals to read the FIFO data in the
order: AUTO-H, AUTO-V, CROSS. The next pictures shows how it is done.

23

Firmware

B
[irst] 0 Eool
—efiaee] %o
dge_detectl?
Eool Bool alling edges
== £ i T
edge_detectls active s A Boal
rizing edges
active high 1 R
UFj= 32 0
: UFix 32 0 Bopl| o4 Leort] |
-n_ant] a en
2 Boo g—rt?
|"’b z L [auto_h_read_en]|
[mrst] >E08] Bool
el %
dge_detect22
alling edges
| [auto_v_read] Bool, f=myfonl actwg hlgh d Bool
edge_detect1d [o
rizing edges "
active high En "
. ot UEi%_32.0
UFix_32_0 Bopl,,
Boo . .
ah &
|"b E [auto_v_read_en]
Bool
_Bool o Bool
edge_detect2l
Bool ——Bool .
| [x_read] +— 1} faHirg—edges + Fanl
edge_detect2) agtive high —*r*sﬁ'iq
rizing edges HEn £ |UFix 22 0
. active hiah = ix_32_
aut
| [X num] UFix_32_0 L a-?b Bodl g{y B |:|_] i
D 2

—

A high level control logic must exist to implement the machine state that serializes the output data. The

next picture shows the logic that allow the FIFO-H read enable to start at first, then the FIFO-H, and last the

FIFO-X. At the end it is needed to present to the data bus of the packetizer also the output of the beam-

former accumulators.

tauto_h_empty] [#0
edge_detect]5
— H rizing edgss
g Fauto_y_enptu] === st +iihich
edge_detect]8
rizing edoss
[x_data_ue] [q active higl
edge_detectd hersirl g -
falling sd =il J Lratlq [auta_h_read]
active high and _— -
= m ZV pe_detectld
edge_detectd Lefeowrl o sing edges :
falling ed en ptive high .
active high stE L q [auto_v_read] |
fn
’—'d
[[emptuyl j=at I st7lq [x_read] |
edge_detectl n

rising edges
active high

24

The 64 bit system

A big multiplexer is demanded to switch between data flow and the selection of the mux input is shown on
the next pictures.

Bool

| [auta_h_read]

[auto_h_read] Bqpjboul

edge_detectd =t

=y Haer]

out: UFix 3 @ [zel_abx]

e

ool

tautn_h_read_en] Biool *

Hool

tautn_u_read_en]

| [x_read_en] Bopl oy Bool [abx_valid]
z

Beam H

edge_detect28
Bean Y falling edges
active high

UFix 2 0

!

[z22]_ahx] sel

UFix B4 0

!

[auto_h_datal

UFix_B4_0

!

[auto_v_datal

UFiX 84 0 [abx_data]

[X_data] UFix_E4_0

!

[bean_h_data] UFix_E4_0

!

UFix B4 0

F

[beam_v_datal dd

Using the simulated data it is shown on the next picture the behavior of this part. The simulation stimulus
used are: number of antennas 9, number of cross correlations 8 (minimal correlation matrix), and the
address of the ADC input used are from zero to 17.

Following the path with the “sim_data” Boolean value set to 1, the AUTO-H values must be a series from 0
to 8, the AUTO-V a series from 9 to 17, and the Cross-Correlation a series from 0 to 7. Looking at the
bottom signal called “valid” you will see the “data” over the output serial bus, and the upper signals
suggest which data stream is. The last spot of data is the BEAM-H and the BEAM-V that need always only 2

25

Firmware

clock cycles while the AUTO and CROSS windows can have different length depending on how many
antennas is connected and how many cross-correlations have been programmed.

ah_empty

av_empty

*_read

x_empty

The next picture has been produced zooming in Y the previous picture in order to demonstrate that the
Beams have the right accumulated values thatis0+1+2+3+4 +5+ 6 + 7 + 8 = 36 for the polarization H
and9+10+11+12+13+14+ 15+ 16+ 17 = 117 for the polarization V.

The “med_makepkg64” orange block is the block the prepare the 10 Gbit packet. It expects to have a data
valid signal in line with the 64 input data and the size of the packet. Since this block prepend a counter in
each packet (useful to compute in post-elaboration the timestamp of each data) it is important to have the
size parameter multiple of AUTO-X + AUTO-V + CROSS + BEAM-H + BEAM-V, otherwise input data validated
on the same clock cycle where the counter is written will be lost. That counter is a 64 bit value that is
written the clock cycle after the “pkt_eof” signal for the 10 Gbit has been raised. The size of the packet can
be loaded and modified by the user writing the software register called “gbe_abx_len”.

26

The 64 bit system

Counter?

abx_walid

it =

outd
du_out[——="__Ipkt walidll
eof

med_mak epkgbd

[[abx_datal i 54
im_imeg_in [abx_walid] dv_in
ghe_abyx_len slokglen
[E—
20

sim_imeg_in
sim_imeg_in

gbe_abx_destport

ﬁEK: Fort 0|

20

L

zoft PSE}

L |

=t
i out

- led_up
led_rx

tx_data led_tx
tx_afull

tx_walid

edge_detectZB
falling edges
active high

tx_overft low

Mt dest 1P pre data

[a:b .

a*

Lx_dest_poﬁ%x-valid
r®_source_ip

b _ende ofadFaepor,
s dEﬁ_end_DF_Frame
- rx_bad_frame

H_OvErr U Slferrun

[pkt_eof]

—hmmar}

gbe_abe

pht_eof

Counter20

e
CounterZe

ot
Su:uut

Counterdn

ghe_abx_down

gbe_abx_txof

27

Control Software

Control Software

All the control software have been developed in Python 2.7 scripts.

System Start Up

To start up the system you need to run a Python script that reads the configurations in a file.

oper@fahal:~/MAD4/bee2$ python mad4_start.py --help
Usage: mad start.py <ROACH HOSTNAME or IP> [options]

Options:
-h, --help show this help message and exit
-p, —--skip prog Skip FPGA programming (assumes already programmed) .
Default: program the FPGAs
-c CONFIG FILE, --config=CONFIG FILE
Select the Configuration file
-e, --skip eq Skip Default Equalization. Default: Equalize Amp 3.5

and Phase 0 to 18 ant

Where the configuration file has these informations:

oper@fahal:~/MAD4/bee2$ more configura.conf
[OBSERVATION]

observ_site = Medicina
antenna type = Vivaldi 2.0
ants =9

pols =2

freq channel = 512

[CONFIG FILE]

pol h = mad pol h.conf
pol v = mad pol v.conf
XCcorr = mad_corr.conf
amp_eq = mad amp_ eqg.conf

phase eq = mad phase eq.conf
adc _curve = adc curve.txt
header = header.conf

rx network = rx network.txt

rx_map = rx mad best.txt
[FENG CONF]
roach name = feng

katcp port = 7147
bitstream = mad full corr 2014 May 13 2258.bof

adc_debug = False

adc_name = x64 adc

pkt len =0

head len = 2048

clock rate = 160000000
sample rate = 40000000

pfb size =11

pfb in signals =0

pfb window = Hamming
pfb in bitwidth = 12

28

System Start Up

pfb _out bitwidth

pfb coeff bitwidth
pfb _quant behavior

fft size
fft_shift
fft in bitwidth
fft out bitwidth

fft quant behavior

fft of behavior

gbe-0

gbe-0_dest ip =
gbe-0 dest port =
gbe-0 _pkt len =

gbe-1

gbe-1 dest ip =
gbe-1 dest port =
gbe-1 pkt len =

gbe-2

gbe-2 dest ip =
gbe-2 dest port =
gbe-2 pkt len =

gbe-3

gbe-3 dest ip =
gbe-3 dest port =
gbe-3 pkt len =

Example of use:

oper@fahal:~/MAD4/bee2$ python mad4_start.py

18
18

Round EvenValues

11
1877

=18

gb

18

Round EvenValues

Wrap
e abx

3232238347

72
64

00
8

not used

0
72
64

01
8

gbe beam
3232238348

72
64

02
8

gbe corr
3232238348

72
64

03
8

Connecting to ROACH board named "feng"...

Deprogramming FPGAs

Programming feng with bitstream mad full corr 2014 May 13 2258.bof

Writing base conf...
Setting N ant to
Setting Frequency channel to

HPOL ANT-F

VPOL

512

<-—=>
<——=>
<——=>
<——=>

9
ANT-F
7
3
0
16
4
5
2
1
6
(A * Bconj)
HOO01l <--->
HOO01 <--->
HO09 <--->
HO09 <--->

29

Control Software

V007 <---> V006 HO09 <---> HO0O05
V007 <---> V009 HO09 <---> HO007
V007 <-=--> V001 HO09 <---> HO002
V003 <---> V004 HO01 <---> HO0O06

Starting interface gbe abx

Set UDP packets destination IP:Port to 192.168.11.11:7200
Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

Starting interface gbe beam

Set UDP packets destination IP:Port to 192.168.11.12:7202
Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

Starting interface gbe corr

Set UDP packets destination IP:Port to 192.168.11.12:7203
Set UDP packets size to 648 (64 bit + 1 counter)

UDP packets started!

EQ AMP FLAG: True , it means the amplitude equalization block is active!

Calibrating ADC on feng

SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)
SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)
SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)
SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)
SUCCESS: adc sync test returns 1 (1 = ADC syncs present & aligned)

Arming F Engine and setting FFT Shift... Armed.

Expect trigger at 11:59:01 local (10:59:01 UTC). Updating header BRAM with
t zero=1512212341

Read from header t zero=1512212341

Updating header BRAM with fft shift=1877

Read from header fft shift=1877

Loading Amp calibration file: eg/default amplitude correction.txt
done

Loading phase calibration file: eq/0 phase correction.txt
done

Antenna 0, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 1, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 2, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 3, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 4, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 5, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 6, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 7, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 8, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 9, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 10, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 11, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 12, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 13, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 14, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 15, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 16, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 17, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0
Antenna 18, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0
Antenna 19, (channel 0): AMPLITUDE: 0.00 PHASE (degs): 0.0

30

System Start Up

Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Antenna
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying

Connecting to ROACH board named "feng"...

Writing phase coefficients...

20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,

channel
channel
channel
channel
channel

(

(

(

(

(
(channel
(channel
(channel
(channel
(channel
(channel
(channel
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration

0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:
0): AMPLITUDE:

coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients

done

O O O O O O O wo o o o

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Updating phase coefficients on header

Writing amp coefficients...

done

.00
.00
.00
.00
.50
.00
.00
.00
.00
.00
.00
.00

antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna

ok

bram. ..

Updating amp coefficients on header bram... d

PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE
PHASE

O J oy O W N O

[O R S R S A O R S S S A A A e e e e e e N o)
P O W o J o0 U d WNE O WOW-Jo U d whE+H O

done

one

O O O O O O O O o o o o

O O O O O O O O o o o o

31

Control Software

Check Antenna Power

There are two Python Scripts to read the Power at ADCs level.

Read Antenna Power

The first script is just to read the dBm Level and Effective Number of Bits used.

oper@fahal:~/MAD4S python mad adc_pwr.py --help

Usage: mad adc pwr.py [options]

Options:

-h,

--help

-c CONFIG_FILE,

-r ROACH NAME,

oper@fahal:~/MAD4S python mad_adc_pwr.py

--roach name=ROACH NAME

-—config file=CONFIG FILE

show this help message and exit

Configuration File

Configuration File

Connecting to ROACH board named "feng"...

HPOL

HOO1
HO002
HO0O03
HO004
HO0O05
HO06
HOO07
HO08
HO009

2017-12-02 10:44:55.795170 UTC

BITS

O J J J J 0o J 0 0

.03
.02
.98
.05
.94
.90
.91
.92
.05

.11
.18
.39
.03
.61
.85
.76
72
.01

O CO O ~J 0O 0O 0 00 0

[Default:

[Default:

ok

"./configura.conf"]

"./configura.conf"]

32

Check Antenna Power

Interactive Antenna Equalization

The second script can be used also to equalize the level of the signals by changing the digital step
attenuator value of the MAD receivers:

oper@fahal:~/MAD4/bee2$ python mad equalize rx ch.py

Connecting to ROACH board named "feng"... ok

Connetion to 192.168.69.1 :5002... ok!

Connetion to 192.168.69.2 :5002... ok!

Connetion to 192.168.69.3 :5002... ok!

Connetion to 192.168.69.4 :5002... ok!
HPOL BITS dBm RxdB diff VPOL BITS dBm RxdB diff
HOO1 7.68 -10.15 10.0 10.2 v001l 7.68 -10.10 10.0 10.1
HO02 7.68 -10.15 10.0 10.2 v002 7.70 -9.99 10.5 10.0
HO03 7.65 -10.32 8.0 10.3 v003 7.69 -10.07 9.0 10.1
HO04 7.74 -9.79 10.0 9.8 v004 7.70 -9.98 9.5 10.0
HOOS5 7.70 -10.03 10.5 10.0 v005 7.69 -10.07 9.0 10.1
HOO06 7.71 -9.94 10.0 9.9 v006 7.63 -10.42 10.0 10.4
HOO7 7.71 -9.94 9.0 9.9 v007 7.66 -10.22 8.5 10.2
HO08 7.68 -10.12 10.5 10.1 v008 7.70 -9.99 10.0 10.0
HO09 7.71 -9.96 9.5 10.0 v009 7.67 -10.19 9.5 10.2

2017-12-02 11:29:28.490257 UTC

Press [h] key to Equalize Pol H
Press [v] key to Equalize Pol V

Press [g] key to Exit

33

Control Software

Load Coefficients

There is a Python script that allows to load Phase and Amplitude coefficients to the backend.

oper@fahal:~/MAD4/bee2$./mad _eq.py -A eq/default amplitude correction.txt -P
eq/0_phase correction.txt

Loading Amp calibration file: eqg/default amplitude correction.txt

done

Loading phase calibration file: eq/0 phase correction.txt

done

Antenna 0, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 1, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 2, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 3, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 4, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 5, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 6, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 7, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 8, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 9, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 10, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 11, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 12, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 13, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 14, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 15, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 16, (channel 0): AMPLITUDE: 3.50 PHASE (degs): 0.0
Antenna 17, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 18, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 19, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 20, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 21, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 22, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 23, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 24, (channel 0): AMPLITUDE: 3.50 PHASE (degs) 0.0
Antenna 25, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 26, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 27, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 28, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 29, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 30, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Antenna 31, (channel 0): AMPLITUDE: 0.00 PHASE (degs) 0.0
Modifying calibration coefficients for antenna 0

Modifying calibration coefficients for antenna 1

Modifying calibration coefficients for antenna 2

Modifying calibration coefficients for antenna 3

Modifying calibration coefficients for antenna 4

Modifying calibration coefficients for antenna 5

Modifying calibration coefficients for antenna 6

Modifying calibration coefficients for antenna 7

Modifying calibration coefficients for antenna 8

Modifying calibration coefficients for antenna 9

Modifying calibration coefficients for antenna 10

Modifying calibration coefficients for antenna 11

Modifying calibration coefficients for antenna 12

Modifying calibration coefficients for antenna 13

Modifying calibration coefficients for antenna 14

Modifying calibration coefficients for antenna 15

34

Load Coefficients

Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying
Modifying

Connecting to ROACH board named "feng"...

Writing phase coefficients...

calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration
calibration

coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients

done

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Updating phase coefficients on header

Writing amp coefficients... done

Updating amp coefficients on header bram...

antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna
antenna

ok

bram. ..

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

done

done

35

Control Software

Plot Instantaneous Spectra

It is possible to plot instantaneous spectra by using the script ./snap_mad.py:

Nice Plotter
ant0 antl ant2 ant3
: na 0 04 aﬂt4 T 0+ aﬂtE T 04 aﬂtﬁ T 0 aﬂt? T
Antann. 0 -—ant8—0 1—antd—"o +—antlbr—o
100 - 10 | 160 - 160 A
‘ Select All ‘ ‘ Deselect All ‘
amp EQ 0 -t+—antl2—0 —ant 35— o +—antd——0
phase EQ 100 - 190 MUWOM
0 T aﬂtlﬁ. 0- 0 T T 0 T T
— — a R In 2.0 0 200 0 200
[*-pol (] Y-pol 100 A 140 |
[Log y-axis
() Plot Single 04 —H0 4 .
.] 200 0 200
() Plot Multiple
@ Plot Multiple as subplots
‘ Update Plot 100%

The Spectra plot title will be referring to the Feng antenna name.

36

Save Raw Data

Save Raw Data

There is a script developed in C to save UDP raw data packets . /c save udp. The usage is shown in the
following example. The function argument is the name of the output file and will be stored in the data
directory. The beginning of the saved file will contain the Header Bram information such the list of the
correlations, the T_Zero time to compute the timestamp for each samples, and all the field described in the
Firmware Chapter. The recording will terminate injecting a Keyboard interrupt Key (CTRL+C).

oper@fahal:~/MAD4$./c_save udp abx

Server : Socket () successful

Server : bind() successful

./mad_header fullcorr.py -o data/2017-12-02 152409 NEW abx.dat
Connecting to ROACH board named "feng"... Writing file header... done!
Receiving packets from 192.168.11.188:7200

First Counter: 120232

~C

oper@fahal:~/MAD4$ 1ls -al data/2017-12-02 15

2017-12-02 151225 NEW test.dat 2017-12-02 152409 NEW abx.dat
oper@fahal:~/MAD4S 1ls -al data/2017-12-02 152409 NEW abx.dat

-rw-rw-r-- 1 oper oper 49540232 Dec 2 15:24 data/2017-12-02 152409 NEW abx.dat

Plot Raw Data

There are two way to plot the saved data. Using the script pi1ot mad.py you need to specify as function
argument what to plot:

oper@fahal:~/MAD4$ python plot mad.py --help
Usage: plot mad.py [options]

Options:
-h, --help show this help message and exit
-p, —-plus marker Plot with '+' (plus markers)

-f FNAME, --fname=FNAME
The name of the file to be plotted
-s INT SIZE, ——int_size=INT_SIZE
Integration Size in milliseconds
-1 INDICE, --index=INDICE
Select which 16 bits plot (Re-Poll=0, Im-Poll=1,Re-
Pol2=2, Im-Pol2=3), Default=0

-b, --beam Show the beam with power

-a, —-plot auto Plot all auto-correlations

-c, —--plot cross Plot all correlations

-x, —-plot complex Plot real and imaginary components

37

Control Software

oper@fahal:~/MAD4$ python plot mad.py -b -f data/2017-12-02_ 152409 NEW_abx.dat
Reading file: data/2017-12-02 152409 NEW abx.dat

Grabbing Header

T zero is 2017-12-02 14:22:19
Header size is 2048

Packet size is 672

100%

Plotting a beam
Process terminated in 0:00:02.342316

1e10 Beamfomer of Pol 1 and 2
30 1 I ']
2.5 -
=3
ey
g
2 2.0~
£
<
1.5 4
1.0
0 2000 4000 6000 8000
Samples

As alternative, you can use an interactive script that shows the list of what is contained in the file:

oper@fahal:~/MAD4$ python plot mad new.py -f data/2017-12-02_ 152409 NEW abx.dat
Reading file: data/2017-12-02 152409 NEW abx.dat

Grabbing Header

T zero is 2017-12-02 14:22:19
Header size is 2048

Packet size is 672 (5384 Bytes)
Number of dual pol antenna 9
Number of baselines 16
Retrieving Data Map...

Total elements 36

0: HOO1 HOO1 1: HO02 HO002 2: HO03 HO003 3: H004 HO004

4: HOO05 HOO0S 5: HOO6_HO0O06 6: HOO7 HOO07 7: HO08 HO008

8: HO09 HOO09 9: v001 vO001 10: v002 Vv002 11: v003 V003
12: v004 Vv004 13: v005 V005 14: v006_ V006 15: v007 _Vv007
16: V008 V008 17: v009 V009 18: v003 Vv008 19: HOO01 HO0O08
20: v003_Vv007 21: HOO01 HOOS 22: V007 _v002 23: HOO09 HOO03
24: v007_v005 25: HO09 HO04 26: V007 _vO006 27: HO09 HOO5
28: v007_v009 29: HO09 HOO07 30: V007 _Vv001 31: HOO09 HO002
32: v003 v004 33: HOO1 HOO6 34: BEAM-H 35: BEAM-V

38

Plot Raw Data

Select a stream to plot: 34

Plotting BEAM-H (34)...
100%Process terminated

in 0:00:02.297335

BEAM-H

200000

150000 +

100000 ~

50000 ~

0_

—50000 -

—100000 +

—150000 ~

T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000
Samples

The following picture shows the onboard computed visibility between the antenna #7 and antenna #1 in a

UAV flight along the V pol:

1e7 V007 V001

0.75 1

0.50 1

0.25 4

0.00 1

Arbitrary unit

—0.25 +

—0.50 +

—0.75 ~

—1.00

T T T T T T T T
100000 200000 300000 400000 500000 600000 7OOO0OO 800000
Samples

39

UDP packets data format

UDP packets data format

The Data Set

As explained above the content of UDP packets depends on the correlation products programmed and the
number of antenna used. In general, the sequence AUTO-X, AUTO-V, CORR, BEAM-H, BEAM-V is always
valid. The following table is an example for an output of a backend configured with 9 dual polarization

antennas and 16 Correlation products for both polarizations.

Offset (I::{th) Name Description
o | 8 | PkiCounter [Thecounterofthepacket |

8 4 IM_Auto-HO01 Imaginary part of the autocorrelation of antenna HO01
12 4 RE_Auto-H001 Real part of the autocorrelation of antenna HO01

16 4 IM_Auto-H002 Imaginary part of the autocorrelation of antenna H002
20 4 RE_Auto-H002 Real part of the autocorrelation of antenna H002

24 4 IM_Auto-H003 Imaginary part of the autocorrelation of antenna HO03
28 4 RE_Auto-H003 Real part of the autocorrelation of antenna HO03

32 4 IM_Auto-H004 Imaginary part of the autocorrelation of antenna H004
36 4 RE_Auto-H004 Real part of the autocorrelation of antenna H004

40 4 IM_Auto-HO05 Imaginary part of the autocorrelation of antenna HO05
44 4 RE_Auto-HO05 Real part of the autocorrelation of antenna HO05

48 4 IM_Auto-HO06 Imaginary part of the autocorrelation of antenna HO06
52 4 RE_Auto-H006 Real part of the autocorrelation of antenna H006

56 4 IM_Auto-HO07 Imaginary part of the autocorrelation of antenna HO07
60 4 RE_Auto-H007 Real part of the autocorrelation of antenna H0O07

64 4 IM_Auto-HO08 Imaginary part of the autocorrelation of antenna HO08
68 4 RE_Auto-H008 Real part of the autocorrelation of antenna HO08

72 4 IM_Auto-H009 Imaginary part of the autocorrelation of antenna H0O09
76 4 RE_Auto-HO09 Real part of the autocorrelation of antenna HO09

80 4 IM_Auto-V001 Imaginary part of the autocorrelation of antenna V001
84 4 RE_Auto-V001 Real part of the autocorrelation of antenna V001

88 4 IM_Auto-V002 Imaginary part of the autocorrelation of antenna V002
92 4 RE_Auto-V002 Real part of the autocorrelation of antenna V002

96 4 IM_Auto-V003 Imaginary part of the autocorrelation of antenna V003

100 4 RE_Auto-V003 Real part of the autocorrelation of antenna V003

104 4 IM_Auto-V004 Imaginary part of the autocorrelation of antenna V004

108 4 RE_Auto-V004 Real part of the autocorrelation of antenna V004

112 4 IM_Auto-V005 Imaginary part of the autocorrelation of antenna V005

116 4 RE_Auto-V005 Real part of the autocorrelation of antenna V005

120 4 IM_Auto-V006 Imaginary part of the autocorrelation of antenna V006

124 4 RE_Auto-V006 Real part of the autocorrelation of antenna V006

128 4 IM_Auto-V007 Imaginary part of the autocorrelation of antenna V007

132 4 RE_Auto-V007 Real part of the autocorrelation of antenna V007

40

The Data Set

136 4 IM_Auto-V008 Imaginary part of the autocorrelation of antenna V008
140 4 RE_Auto-V008 Real part of the autocorrelation of antenna V008
144 4 IM_Auto-V009 Imaginary part of the autocorrelation of antenna V009
148 4 RE_Auto-V009 Real part of the autocorrelation of antenna V009
152 4 IM_Cross_V003_V008 | Imaginary part of the cross correlation VO0O3_V008
156 4 Re_Cross_V003 V008 | Real part of the cross correlation VO03_V008

160 4 IM_Cross_H001_HO008 | Imaginary part of the cross correlation HO01_H008
164 4 Re_Cross_HO001 HOO08 | Real part of the cross correlation HO01_HO008

168 4 IM_Cross_V003_V007 |Imaginary part of the cross correlation VO0O3_V007
172 4 Re_Cross V003 V007 |Real part of the cross correlation VO03_V007

176 4 IM_Cross_H001_HO0O09 |Imaginary part of the cross correlation HO01_H009
180 4 Re_Cross_HO001_ HO09 | Real part of the cross correlation HO01_H009

184 4 IM_Cross_V007_V002 |Imaginary part of the cross correlation VO07_V002
188 4 Re_Cross_V007_V002 | Real part of the cross correlation VO07_V002

192 4 IM_Cross_H009 HO003 |Imaginary part of the cross correlation HO09 H003
196 4 Re_Cross_HO009 HO003 | Real part of the cross correlation HO09_HO003

200 4 IM_Cross_V007_V005 | Imaginary part of the cross correlation VO0O7_V005
204 4 Re_Cross_V007_V005 | Real part of the cross correlation VO07_V005

208 4 IM_Cross_HO009_H004 | Imaginary part of the cross correlation HO09_H004
212 4 Re_Cross_HO09 HO04 | Real part of the cross correlation HO09 H004

216 4 IM_Cross_V007_V006 |Imaginary part of the cross correlation VOO7_V006
220 4 Re_Cross_V007_V006 |Real part of the cross correlation VO07_V006

224 4 IM_Cross_HO09 HOO05 |Imaginary part of the cross correlation HO09 H005
228 4 Re_Cross_HO009 HOO05 | Real part of the cross correlation HO09_HO005

232 4 IM_Cross_V007_V009 |Imaginary part of the cross correlation VO07_V009
236 4 Re_Cross_V007_V009 | Real part of the cross correlation VO0O7_V009

240 4 IM_Cross_H009_HO007 | Imaginary part of the cross correlation HO09_H007
244 4 Re_Cross_HO009 HO007 | Real part of the cross correlation HO09_HO007

248 4 IM_Cross_V007_V001 |Imaginary part of the cross correlation VO07_V001
252 4 Re_Cross_V007_V001 | Real part of the cross correlation VO07_V001

256 4 IM_Cross_HO09_HO002 |Imaginary part of the cross correlation HO09_H002
260 4 Re_Cross_H009_HO002 | Real part of the cross correlation HO09_H002

264 4 IM_Cross_V003 V004 |Imaginary part of the cross correlation VO03_ V004
268 4 Re_Cross_V003_V004 | Real part of the cross correlation VO03_V004

272 4 IM_Cross_H001_HO006 |Imaginary part of the cross correlation HO01_H006
276 4 Re_Cross_HO001 HOO06 | Real part of the cross correlation HO01_HO006

280 4 IM_Beam-H Imaginary part of the BEAM-H

284 4 RE_Beam-H Real part of the BEAM-H

288 4 IM_Beam-V Imaginary part of the BEAM-V

292 4 RE_Beam-V Real part of the BEAM-V

The yellow records on the above table (of length 36 = 9 AutoH +9 AutoV + 16 Correlations + 2 Beam)is a

repetitive part on the UDP packet data field. The packet size should be a multiple of this number, the

explanation has been given in the previous chapter talking of the packetizer block that sends a new packet

counter one clock after the 10 Gbit end of frame signal.

41

UDP packets data format

The packet size used for the MAD3 experiment was 648 (words of 8 Bytes, 5184 Bytes) that means there
are 648/36=18 blocks of data in each packets. The packet size parameter must not take into account of the
packet counter. Since the period of each spectra is 1/(40MHz/2048 (fft real sample))= 51.2 microseconds,
the period of one packet is 51.2 *18 =0.9216 milliseconds. Combining this information with the t_zero field
of the output file header and the counter of each packet you have the timestamp of each data. The counter
of the packet is also useful to know if there are some missing packets.

Size (word
Offset of 651 bit) Name
o | 1 [ke counter

1 36 Data set #1
37 36 Data set #2
73 36 Data set #3
109 36 Data set #4
145 36 Data set #5
181 36 Data set #6
217 36 Data set #7
253 36 Data set #8
289 36 Data set #9
325 36 Data set #10
361 36 Data set #11
397 36 Data set #12
433 36 Data set #13
469 36 Data set #14
505 36 Data set #15
541 36 Data set #16
577 36 Data set #17
613 36 Data set #18

The software that will receive data from the UDP socket will have to read 648+1 words of 8 Bytes.

42

Firmware Antenna Map

Mapping Antenna/Rx/ADC

The map of the configuration is written in several file.

Firmware Antenna Map

These files create an association between MAD antenna nicknames (Pol+Ant number) and the Firmware
antenna Numbering (aka Feng numbers).

oper@fahal:~/MAD4S$ more mad pol h.conf
H001=8
H002=15
H003=13
H004=10
HOO05=14
HO006=24
HO07=11
HO008=12
H009=9

oper@fahal:~/MAD4$ more mad pol v.conf
v001=7
Vv002=5
Vv003=0
v004=16
V005=2
v006=6
v007=1
v008=4
Vv009=3

BEST Receivers Map

This file create an association between the name of a BEST Receivers (first column) and the Slave ID for the
Carrier RS485 communication (last column).

oper@fahal:~/MAD4$ more rx map best.txt

IN-1-1 0 0 11
IN-1-2 0 0 12
IN-1-3 0 0 13
IN-1-4 0 0 14
IN-2-1 0 0 21
IN-2-2 0 0 22
IN-2-3 0 0 23
IN-2-4 0 0 24
IN-3-1 1 1 31
IN-3-2 1 1 32
IN-3-3 1 1 33
IN-3-4 1 1 34
IN-4-1 1 1 41
IN-4-2 1 1 42
IN-4-3 1 1 43
IN-4-4 1 1 44
IN-5-1 2 2 51
IN-5-2 2 2 52
IN-5-3 2 2 53

43

Mapping Antenna/Rx/ADC

IN-5-4 2 2 54
IN-6-1 2 2 61
IN-6-2 2 2 62
IN-6-3 2 2 63
IN-6-4 2 2 64
IN-7-1 3 3 71
IN-7-2 3 3 72
IN-7-3 3 3 73
IN-7-4 3 3 74
IN-8-1 3 3 81
IN-8-2 3 3 82
IN-8-3 3 3 83
IN-8-4 3 3 84

MAD Receivers Map

Following the previous configuration file here the link between MAD antennas and RX Carrier Slave ID.

oper@fahal:~/MAD4/bee2$ more rx_config.txt

HOO1 8 0 44
v0o0l 7 0 51
HO02 15 0 84
v002 5 0 52
HO03 13 0 81
v003 0 0 41
HO004 10 0 82
v004 16 0 11
HOO05 14 1 71
V005 2 1 64
HOO6 24 1 83
v006 6 1 73
HOO07 11 1 24
voo7 1 1 23
HOO08 12 1 43
v0o0o8 4 1 61
HO09 9 2 54
v009 3 2 62

Network Receivers Map

Here the IPs list of the Receiver carrier boxes.

oper@fahal:~/MAD4/bee2$ more rx network.txt
192.168.69.1

192.168.69.
192.168.69.
192.168.69.

Sw N

44

Network Receivers Map

Acronyms

ADC Analog to Digital Converters
BEST Basic Element for SKA Training
FFT Fast Fourier Transform

MAD Medicina Array Demonstrator
PFB PolyPhase Filter Bank

RX Receiver

SKA Square Kilometer Array

UDP User Datagram Protocol

45

