SUBROUTINE CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY) C .. Scalar Arguments .. COMPLEX ALPHA, BETA INTEGER INCX, INCY, N CHARACTER*1 UPLO C .. Array Arguments .. COMPLEX AP( * ), X( * ), Y( * ) C .. Parameters .. COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) C .. Local Scalars .. COMPLEX TEMP1, TEMP2 INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY C .. External Functions .. LOGICAL LSAME EXTERNAL LSAME C .. External Subroutines .. EXTERNAL XERBLA C .. Intrinsic Functions .. INTRINSIC CONJG, REAL C***FIRST EXECUTABLE STATEMENT CHPMV C C Test the input parameters. C INFO = 0 IF ( .NOT.LSAME( UPLO, 'U' ).AND. $ .NOT.LSAME( UPLO, 'L' ) )THEN INFO = 1 ELSE IF( N.LT.0 )THEN INFO = 2 ELSE IF( INCX.EQ.0 )THEN INFO = 6 ELSE IF( INCY.EQ.0 )THEN INFO = 9 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'CHPMV ', INFO ) RETURN END IF C C Quick return if possible. C IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN C C Set up the start points in X and Y. C IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( N - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( N - 1 )*INCY END IF C C Start the operations. In this version the elements of the array AP C are accessed sequentially with one pass through AP. C C First form y := beta*y. C IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, N Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, N Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, N Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, N Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN KK = 1 IF( LSAME( UPLO, 'U' ) )THEN C C Form y when AP contains the upper triangle. C IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN DO 60, J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO K = KK DO 50, I = 1, J - 1 Y( I ) = Y( I ) + TEMP1*AP( K ) TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I ) K = K + 1 50 CONTINUE Y( J ) = Y( J ) + TEMP1*REAL( AP( KK + J - 1 ) ) $ + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80, J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO IX = KX IY = KY DO 70, K = KK, KK + J - 2 Y( IY ) = Y( IY ) + TEMP1*AP( K ) TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX ) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK + J - 1 ) ) $ + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE C C Form y when AP contains the lower triangle. C IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN DO 100, J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO Y( J ) = Y( J ) + TEMP1*REAL( AP( KK ) ) K = KK + 1 DO 90, I = J + 1, N Y( I ) = Y( I ) + TEMP1*AP( K ) TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I ) K = K + 1 90 CONTINUE Y( J ) = Y( J ) + ALPHA*TEMP2 KK = KK + ( N - J + 1 ) 100 CONTINUE ELSE JX = KX JY = KY DO 120, J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK ) ) IX = JX IY = JY DO 110, K = KK + 1, KK + N - J IX = IX + INCX IY = IY + INCY Y( IY ) = Y( IY ) + TEMP1*AP( K ) TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX ) 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + ( N - J + 1 ) 120 CONTINUE END IF END IF C RETURN C C End of CHPMV . C END