SUBROUTINE DSDBCG (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL, + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW) C .. Parameters .. INTEGER LOCRB, LOCIB PARAMETER (LOCRB=1, LOCIB=11) C .. Scalar Arguments .. DOUBLE PRECISION ERR, TOL INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT C .. Array Arguments .. DOUBLE PRECISION A(N), B(N), RWORK(LENW), X(N) INTEGER IA(NELT), IWORK(LENIW), JA(NELT) C .. Local Scalars .. INTEGER LOCDIN, LOCDZ, LOCIW, LOCP, LOCPP, LOCR, LOCRR, LOCW, + LOCZ, LOCZZ C .. External Subroutines .. EXTERNAL DBCG, DCHKW, DS2Y, DSDI, DSDS, DSMTV, DSMV C***FIRST EXECUTABLE STATEMENT DSDBCG C IERR = 0 IF( N.LT.1 .OR. NELT.LT.1 ) THEN IERR = 3 RETURN ENDIF C C Change the SLAP input matrix IA, JA, A to SLAP-Column format. CALL DS2Y( N, NELT, IA, JA, A, ISYM ) C C Set up the workspace. LOCIW = LOCIB C LOCDIN = LOCRB LOCR = LOCDIN + N LOCZ = LOCR + N LOCP = LOCZ + N LOCRR = LOCP + N LOCZZ = LOCRR + N LOCPP = LOCZZ + N LOCDZ = LOCPP + N LOCW = LOCDZ + N C C Check the workspace allocations. CALL DCHKW( 'DSDBCG', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR ) IF( IERR.NE.0 ) RETURN C IWORK(4) = LOCDIN IWORK(9) = LOCIW IWORK(10) = LOCW C C Compute the inverse of the diagonal of the matrix. CALL DSDS(N, NELT, IA, JA, A, ISYM, RWORK(LOCDIN)) C C Perform the Diagonally Scaled BiConjugate gradient algorithm. CALL DBCG(N, B, X, NELT, IA, JA, A, ISYM, DSMV, DSMTV, $ DSDI, DSDI, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, $ RWORK(LOCR), RWORK(LOCZ), RWORK(LOCP), $ RWORK(LOCRR), RWORK(LOCZZ), RWORK(LOCPP), $ RWORK(LOCDZ), RWORK(1), IWORK(1)) RETURN C------------- LAST LINE OF DSDBCG FOLLOWS ---------------------------- END