SUBROUTINE RC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM, IER) C INTEGER NDIM, IER REAL L1, L2, L3, M1, M2MIN, M2MAX, THRCOF(NDIM) C INTEGER I, INDEX, LSTEP, N, NFIN, NFINP1, NFINP2, NFINP3, NLIM, + NSTEP2 REAL A1, A1S, C1, C1OLD, C2, CNORM, R1MACH, DV, EPS, + HUGE, M2, M3, NEWFAC, OLDFAC, ONE, RATIO, SIGN1, + SIGN2, SRHUGE, SRTINY, SUM1, SUM2, SUMBAC, + SUMFOR, SUMUNI, THRESH, TINY, TWO, X, X1, X2, X3, + Y, Y1, Y2, Y3, ZERO C DATA ZERO,EPS,ONE,TWO /0.0,0.01,1.0,2.0/ C C***FIRST EXECUTABLE STATEMENT RC3JM IER=0 C HUGE is the square root of one twentieth of the largest floating C point number, approximately. HUGE = SQRT(R1MACH(2)/20.0) SRHUGE = SQRT(HUGE) TINY = 1.0/HUGE SRTINY = 1.0/SRHUGE C C MMATCH = ZERO C C C Check error conditions 1, 2, and 3. IF((L1-ABS(M1)+EPS.LT.ZERO).OR. + (MOD(L1+ABS(M1)+EPS,ONE).GE.EPS+EPS))THEN IER=1 CALL XERMSG('SLATEC','RC3JM','L1-ABS(M1) less than zero or '// + 'L1+ABS(M1) not integer.',IER,1) RETURN ELSEIF((L1+L2-L3.LT.-EPS).OR.(L1-L2+L3.LT.-EPS).OR. + (-L1+L2+L3.LT.-EPS))THEN IER=2 CALL XERMSG('SLATEC','RC3JM','L1, L2, L3 do not satisfy '// + 'triangular condition.',IER,1) RETURN ELSEIF(MOD(L1+L2+L3+EPS,ONE).GE.EPS+EPS)THEN IER=3 CALL XERMSG('SLATEC','RC3JM','L1+L2+L3 not integer.',IER,1) RETURN ENDIF C C C Limits for M2 M2MIN = MAX(-L2,-L3-M1) M2MAX = MIN(L2,L3-M1) C C Check error condition 4. IF(MOD(M2MAX-M2MIN+EPS,ONE).GE.EPS+EPS)THEN IER=4 CALL XERMSG('SLATEC','RC3JM','M2MAX-M2MIN not integer.',IER,1) RETURN ENDIF IF(M2MIN.LT.M2MAX-EPS) GO TO 20 IF(M2MIN.LT.M2MAX+EPS) GO TO 10 C C Check error condition 5. IER=5 CALL XERMSG('SLATEC','RC3JM','M2MIN greater than M2MAX.',IER,1) RETURN C C C This is reached in case that M2 and M3 can take only one value. 10 CONTINUE C MSCALE = 0 THRCOF(1) = (-ONE) ** INT(ABS(L2-L3-M1)+EPS) / 1 SQRT(L1+L2+L3+ONE) RETURN C C This is reached in case that M1 and M2 take more than one value. 20 CONTINUE C MSCALE = 0 NFIN = INT(M2MAX-M2MIN+ONE+EPS) IF(NDIM-NFIN) 21, 23, 23 C C Check error condition 6. 21 IER = 6 CALL XERMSG('SLATEC','RC3JM','Dimension of result array for 3j '// + 'coefficients too small.',IER,1) RETURN C C C C Start of forward recursion from M2 = M2MIN C 23 M2 = M2MIN THRCOF(1) = SRTINY NEWFAC = 0.0 C1 = 0.0 SUM1 = TINY C C LSTEP = 1 30 LSTEP = LSTEP + 1 M2 = M2 + ONE M3 = - M1 - M2 C C OLDFAC = NEWFAC A1 = (L2-M2+ONE) * (L2+M2) * (L3+M3+ONE) * (L3-M3) NEWFAC = SQRT(A1) C C DV = (L1+L2+L3+ONE)*(L2+L3-L1) - (L2-M2+ONE)*(L3+M3+ONE) 1 - (L2+M2-ONE)*(L3-M3-ONE) C IF(LSTEP-2) 32, 32, 31 C 31 C1OLD = ABS(C1) 32 C1 = - DV / NEWFAC C IF(LSTEP.GT.2) GO TO 60 C C C If M2 = M2MIN + 1, the third term in the recursion equation vanishes, C hence C X = SRTINY * C1 THRCOF(2) = X SUM1 = SUM1 + TINY * C1*C1 IF(LSTEP.EQ.NFIN) GO TO 220 GO TO 30 C C 60 C2 = - OLDFAC / NEWFAC C C Recursion to the next 3j coefficient X = C1 * THRCOF(LSTEP-1) + C2 * THRCOF(LSTEP-2) THRCOF(LSTEP) = X SUMFOR = SUM1 SUM1 = SUM1 + X*X IF(LSTEP.EQ.NFIN) GO TO 100 C C See if last unnormalized 3j coefficient exceeds SRHUGE C IF(ABS(X).LT.SRHUGE) GO TO 80 C C This is reached if last 3j coefficient larger than SRHUGE, C so that the recursion series THRCOF(1), ... , THRCOF(LSTEP) C has to be rescaled to prevent overflow C C MSCALE = MSCALE + 1 DO 70 I=1,LSTEP IF(ABS(THRCOF(I)).LT.SRTINY) THRCOF(I) = ZERO 70 THRCOF(I) = THRCOF(I) / SRHUGE SUM1 = SUM1 / HUGE SUMFOR = SUMFOR / HUGE X = X / SRHUGE C C C As long as ABS(C1) is decreasing, the recursion proceeds towards C increasing 3j values and, hence, is numerically stable. Once C an increase of ABS(C1) is detected, the recursion direction is C reversed. C 80 IF(C1OLD-ABS(C1)) 100, 100, 30 C C C Keep three 3j coefficients around MMATCH for comparison later C with backward recursion values. C 100 CONTINUE C MMATCH = M2 - 1 NSTEP2 = NFIN - LSTEP + 3 X1 = X X2 = THRCOF(LSTEP-1) X3 = THRCOF(LSTEP-2) C C Starting backward recursion from M2MAX taking NSTEP2 steps, so C that forwards and backwards recursion overlap at the three points C M2 = MMATCH+1, MMATCH, MMATCH-1. C NFINP1 = NFIN + 1 NFINP2 = NFIN + 2 NFINP3 = NFIN + 3 THRCOF(NFIN) = SRTINY SUM2 = TINY C C C M2 = M2MAX + TWO LSTEP = 1 110 LSTEP = LSTEP + 1 M2 = M2 - ONE M3 = - M1 - M2 OLDFAC = NEWFAC A1S = (L2-M2+TWO) * (L2+M2-ONE) * (L3+M3+TWO) * (L3-M3-ONE) NEWFAC = SQRT(A1S) DV = (L1+L2+L3+ONE)*(L2+L3-L1) - (L2-M2+ONE)*(L3+M3+ONE) 1 - (L2+M2-ONE)*(L3-M3-ONE) C1 = - DV / NEWFAC IF(LSTEP.GT.2) GO TO 120 C C If M2 = M2MAX + 1 the third term in the recursion equation vanishes C Y = SRTINY * C1 THRCOF(NFIN-1) = Y IF(LSTEP.EQ.NSTEP2) GO TO 200 SUMBAC = SUM2 SUM2 = SUM2 + Y*Y GO TO 110 C 120 C2 = - OLDFAC / NEWFAC C C Recursion to the next 3j coefficient C Y = C1 * THRCOF(NFINP2-LSTEP) + C2 * THRCOF(NFINP3-LSTEP) C IF(LSTEP.EQ.NSTEP2) GO TO 200 C THRCOF(NFINP1-LSTEP) = Y SUMBAC = SUM2 SUM2 = SUM2 + Y*Y C C C See if last 3j coefficient exceeds SRHUGE C IF(ABS(Y).LT.SRHUGE) GO TO 110 C C This is reached if last 3j coefficient larger than SRHUGE, C so that the recursion series THRCOF(NFIN), ... , THRCOF(NFIN-LSTEP+1) C has to be rescaled to prevent overflow. C C MSCALE = MSCALE + 1 DO 111 I=1,LSTEP INDEX = NFIN - I + 1 IF(ABS(THRCOF(INDEX)).LT.SRTINY) 1 THRCOF(INDEX) = ZERO 111 THRCOF(INDEX) = THRCOF(INDEX) / SRHUGE SUM2 = SUM2 / HUGE SUMBAC = SUMBAC / HUGE C GO TO 110 C C C C The forward recursion 3j coefficients X1, X2, X3 are to be matched C with the corresponding backward recursion values Y1, Y2, Y3. C 200 Y3 = Y Y2 = THRCOF(NFINP2-LSTEP) Y1 = THRCOF(NFINP3-LSTEP) C C C Determine now RATIO such that YI = RATIO * XI (I=1,2,3) holds C with minimal error. C RATIO = ( X1*Y1 + X2*Y2 + X3*Y3 ) / ( X1*X1 + X2*X2 + X3*X3 ) NLIM = NFIN - NSTEP2 + 1 C IF(ABS(RATIO).LT.ONE) GO TO 211 C DO 210 N=1,NLIM 210 THRCOF(N) = RATIO * THRCOF(N) SUMUNI = RATIO * RATIO * SUMFOR + SUMBAC GO TO 230 C 211 NLIM = NLIM + 1 RATIO = ONE / RATIO DO 212 N=NLIM,NFIN 212 THRCOF(N) = RATIO * THRCOF(N) SUMUNI = SUMFOR + RATIO*RATIO*SUMBAC GO TO 230 C 220 SUMUNI = SUM1 C C C Normalize 3j coefficients C 230 CNORM = ONE / SQRT((L1+L1+ONE) * SUMUNI) C C Sign convention for last 3j coefficient determines overall phase C SIGN1 = SIGN(ONE,THRCOF(NFIN)) SIGN2 = (-ONE) ** INT(ABS(L2-L3-M1)+EPS) IF(SIGN1*SIGN2) 235,235,236 235 CNORM = - CNORM C 236 IF(ABS(CNORM).LT.ONE) GO TO 250 C DO 240 N=1,NFIN 240 THRCOF(N) = CNORM * THRCOF(N) RETURN C 250 THRESH = TINY / ABS(CNORM) DO 251 N=1,NFIN IF(ABS(THRCOF(N)).LT.THRESH) THRCOF(N) = ZERO 251 THRCOF(N) = CNORM * THRCOF(N) C C C RETURN END