SUBROUTINE SSJAC (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL, + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW) C .. Parameters .. INTEGER LOCRB, LOCIB PARAMETER (LOCRB=1, LOCIB=11) C .. Scalar Arguments .. REAL ERR, TOL INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT C .. Array Arguments .. REAL A(NELT), B(N), RWORK(LENW), X(N) INTEGER IA(NELT), IWORK(LENIW), JA(NELT) C .. Local Scalars .. INTEGER LOCD, LOCDZ, LOCIW, LOCR, LOCW, LOCZ C .. External Subroutines .. EXTERNAL SCHKW, SIR, SS2Y, SSDI, SSDS, SSMV C***FIRST EXECUTABLE STATEMENT SSJAC C IERR = 0 IF( N.LT.1 .OR. NELT.LT.1 ) THEN IERR = 3 RETURN ENDIF LOCIW = LOCIB LOCD = LOCRB LOCR = LOCD + N LOCZ = LOCR + N LOCDZ = LOCZ + N LOCW = LOCDZ + N C C Check the workspace allocations. CALL SCHKW( 'SSJAC', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR ) IF( IERR.NE.0 ) RETURN C IWORK(4) = LOCD IWORK(9) = LOCIW IWORK(10) = LOCW C C Convert to SLAP column format. CALL SS2Y(N, NELT, IA, JA, A, ISYM ) C C Compute the inverse of the diagonal of the matrix. This C will be used as the preconditioner. CALL SSDS(N, NELT, IA, JA, A, ISYM, RWORK(LOCD)) C C Set up the work array and perform the iterative refinement. CALL SIR(N, B, X, NELT, IA, JA, A, ISYM, SSMV, SSDI, ITOL, TOL, $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK(LOCR), RWORK(LOCZ), $ RWORK(LOCDZ), RWORK, IWORK ) RETURN C------------- LAST LINE OF SSJAC FOLLOWS ----------------------------- END