Unbiased flux calibration for Single-dish radio telescopes

Dealing with frequency-dependence

Benjamin Winkel

Max-Planck-Institut für Radioastronomie
Overview

- Introduction: simplest flux calibration
- Position switching
 - Classic method
 - Unbiased technique
- Frequency switching
- Comparison PSW vs. FSW
Fundamental equation

\[P[\text{counts}] = G[\text{counts}/K] \cdot (T_{\text{sou}}[K] + T_{\text{sys}}[K]) \]
Fundamental equation

\[P[\text{counts}] = G[\text{counts}/K] \cdot (T_{\text{sou}}[K] + T_{\text{sys}}[K]) \]

Calibrating a system means to determine G
Most simple method

- Use known source to infer G

Assuming, the receiver is linear: $G \neq f(T)$
Most simple method

- Use known source to infer G
- Problem: G is not perfectly stable
- Solution:
 - Use a reference $→$ Noise diode (T_{cal})

Assuming, the receiver is linear: $G \not\equiv f(T)$
Using a noise diode

We now have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]

\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{P_{\text{cal}} - P} \]
Using a noise diode

We now have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]

\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{P_{\text{cal}} - P} \]

This is really noisy, because \(P_{\text{cal}} - P \ll P \)
Using a noise diode

We now have

\[P = G \cdot (T_{sou} + T_{sys}) \]

\[P^{cal} = G \cdot (T_{sou} + T_{sys} + T_{cal}) \]

It follows

\[\frac{T_{sys} + T_{sou}}{T_{cal}} = \frac{P}{P^{cal} - P} \]

Identify \(G \cdot T_{cal} = P^{cal} - P \) as a slowly changing quantity (or even constant)

\[\overline{G \cdot T_{cal}} = \langle P^{cal} - P \rangle \]
Using a noise diode

We now have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]

\[P^{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{G \cdot T_{\text{cal}}} \]

We still need to use a calibration source to infer \(T_{\text{cal}} \)!
First conclusion

Flux calibration is about knowing where one may safely average (or filter, or model) a quantity.
Again we have

\[P = G \cdot (T_{\text{so}} + T_{\text{sys}}) \]

\[P_{\text{cal}} = G \cdot (T_{\text{so}} + T_{\text{sys}} + T_{\text{cal}}) \]

But now everything is a function of frequency
Spectroscopy

Again we have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

Try again

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{P_{\text{cal}} - P} \]
Again we have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]

\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

Try again

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{P_{\text{cal}} - P} \]
Spectroscopy

Again we have

\[P = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]

\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]

Try again

\[\frac{T_{\text{sys}} + T_{\text{sou}}}{T_{\text{cal}}} = \frac{P}{P_{\text{cal}} - P} \]

Average in time? (needs more data)

Average in frequency? (bad idea, G strongly freq-dependent)
Position switching

Observe ON and OFF-source

\[P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}} + T_{\text{cal}}) \]
Position switching

Observe ON and OFF-source

\[
P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}})
\]

\[
P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}})
\]

\[
P_{\text{off}} = G \cdot (T_{\text{sys}})
\]

\[
P_{\text{off}} = G \cdot (T_{\text{sys}} + T_{\text{cal}})
\]

It follows

\[
\frac{T_{\text{sou}}}{T_{\text{sys}}} = \frac{P_{\text{on}} - P_{\text{off}}}{P_{\text{off}}}
\]
Position switching

Observe ON and OFF-source

\[P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sou}}}{T_{\text{sys}}} = \frac{P_{\text{on}} - P_{\text{off}}}{P_{\text{off}}} \]

However, this is a function of \(T_{\text{sys}} \)

Need to compute it!
PSW – Inferring T_{sys}

Observe ON and OFF-source

\[
P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}})
\]
\[
P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}})
\]
\[
T_{\text{off}} = G \cdot (T_{\text{sys}})
\]
\[
P_{\text{off}} = G \cdot (T_{\text{sys}} + T_{\text{cal}})
\]

Compute

\[
\frac{T_{\text{sys}}}{T_{\text{cal}}} = \frac{P_{\text{off}}}{P_{\text{cal}}^{\text{off}} - P_{\text{off}}^{\text{cal}}}
\]
PSW – Inferring T_{sys}

Observe ON and OFF-source

\[
\begin{align*}
 P_{\text{on}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}}) \\
 P_{\text{cal}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \\
 P_{\text{off}} &= G \cdot (T_{\text{sys}}) \\
 P_{\text{off}}^\text{cal} &= G \cdot (T_{\text{sys}} + T_{\text{cal}})
\end{align*}
\]

Compute

\[
\frac{T_{\text{sys}}}{T_{\text{cal}}} = \frac{P_{\text{off}}}{P_{\text{off}}^\text{cal} - P_{\text{off}}}
\]

Again, the denominator is too small

Need some kind of averaging
PSW – Inferring T_{sys} – Classic

Observe ON and OFF-source

\[
P_{on} = G \cdot (T_{sou} + T_{sys})
\]
\[
P_{cal} = G \cdot (T_{sou} + T_{sys} + T_{cal})
\]
\[
P_{off} = G \cdot (T_{sys})
\]
\[
P_{cal} = G \cdot (T_{sys} + T_{cal})
\]

Compute

\[
\frac{T_{sys}}{T_{cal}} = \left\langle \frac{P_{off}}{P_{cal} - P_{off}} \right\rangle_{\nu}
\]
PSW – Inferring T_{sys} – Classic

Observe ON and OFF-source

\[
P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}})
\]
\[
P_{\text{on}}^{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}})
\]
\[
P_{\text{off}} = G \cdot (T_{\text{sys}})
\]
\[
P_{\text{off}}^{\text{cal}} = G \cdot (T_{\text{sys}} + T_{\text{cal}})
\]

Compute

\[
\frac{T_{\text{sys}}}{T_{\text{cal}}} = \left\langle \frac{P_{\text{off}}}{P_{\text{off}}^{\text{cal}} - P_{\text{off}}} \right\rangle
\]
\[
\frac{T_{\text{sys}}}{T_{\text{cal}}} = \left\langle \frac{P_{\text{off}}^{\text{cal}} - P_{\text{off}}}{P_{\text{off}}} \right\rangle^{-1}
\]
PSW – Classic solution

Observe ON and OFF-source

\[P_{on} = G \cdot (T_{sou} + T_{sys}) \]
\[P_{cal} = G \cdot (T_{sou} + T_{sys} + T_{cal}) \]
\[P_{off} = G \cdot (T_{sys}) \]
\[P_{cal} = G \cdot (T_{sys} + T_{cal}) \]

"Classic" solution

\[\frac{T_{sou}}{T_{cal}} = \frac{T_{sys}}{T_{cal}} \frac{P_{on} - P_{off}}{P_{off}} \]
Observe ON and OFF-source

\[
\begin{align*}
 P_{\text{on}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}}) \\
 P_{\text{off}} &= G \cdot (T_{\text{sys}}) \\
 P_{\text{cal}} &= G \cdot (T_{\text{sou}} + T_{\text{cal}}) \\
 P_{\text{cal}} &= G \cdot (T_{\text{sys}} + T_{\text{cal}})
\end{align*}
\]

“Classic” solution

\[
\frac{T_{\text{sou}}}{T_{\text{cal}}} = \frac{\overline{T_{\text{sys}}} P_{\text{on}} - P_{\text{off}}}{T_{\text{cal}} P_{\text{off}}}
\]

But: \(T_{\text{sys}} \) and \(T_{\text{cal}} \) are frequency-dependent!
Typical T_{sys} and T_{cal} curves
Typical T_{sys} and T_{cal} curves

P13mm-XFFTS: T_{cal} using NGC7027

Frequency [MHz]

T_{cal} [K]

18000 19000 20000 21000 22000 23000 24000 25000 26000
Second conclusion

We must account for the frequency dependence, if

- Bandwidth is large
- T_{sys} or T_{cal} change rapidly
- Relative calibration is important (i.e., line ratios)
PSW – Unbiased method

Observe ON and OFF-source

\[
\begin{align*}
P_{\text{on}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}}) \\
P_{\text{off}} &= G \cdot (T_{\text{sys}}) \\
P_{\text{on}}^\text{cal} &= G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \\
P_{\text{off}}^\text{cal} &= G \cdot (T_{\text{sys}} + T_{\text{cal}})
\end{align*}
\]

It follows

\[
\frac{T_{\text{sou}}}{T_{\text{sys}}} = \frac{P_{\text{on}} - P_{\text{off}}}{P_{\text{off}}}
\]

Start with the same base equation
PSW – Unbiased method

Observe ON and OFF-source

\[P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sys}}}{T_{\text{cal}}} = \frac{P_{\text{off}}}{P_{\text{cal}} - P_{\text{off}}} \]

Just use another method to calculate Tsys/Tcal
PSW – Unbiased method

Observe ON and OFF-source

\[P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{on}}^\text{cal} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}}) \]
\[P_{\text{off}}^\text{cal} = G \cdot (T_{\text{sys}} + T_{\text{cal}}) \]

It follows

\[\frac{T_{\text{sys}}}{T_{\text{cal}}} = \left[\frac{P_{\text{off}}^\text{cal} - P_{\text{off}}}{P_{\text{off}}} \right]^{-1} \]

Model this quantity and invert afterwards.
Observe ON and OFF-source

\[
\begin{align*}
 P_{\text{on}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}}) \\
 P_{\text{cal}} &= G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \\
 P_{\text{off}} &= G \cdot (T_{\text{sys}}) \\
 P_{\text{off}}^\text{cal} &= G \cdot (T_{\text{sys}} + T_{\text{cal}})
\end{align*}
\]

It follows

\[
\frac{T_{\text{sys}}}{T_{\text{cal}}} = \left[\frac{P_{\text{cal}}^\text{off} - P_{\text{cal}}^\text{off}}{P_{\text{off}}^\text{off}} \right]^{-1}
\]

Model this quantity and invert afterwards
PSW – Unbiased method

Possible methods to model $T_{\text{cal}}/T_{\text{sys}}$

- Simple binning
- Filtering (e.g., Wiener or Gauss)
- Curve fitting (e.g., polynomials)
PSW – Unbiased method – Results

Observe ON and OFF-source

\[P_{\text{on}} = G \cdot (T_{\text{sou}} + T_{\text{sys}}) \]
\[P_{\text{cal}} = G \cdot (T_{\text{sou}} + T_{\text{sys}} + T_{\text{cal}}) \]
\[P_{\text{off}} = G \cdot (T_{\text{sys}}) \]
\[P_{\text{calc}} = G \cdot (T_{\text{sys}} + T_{\text{cal}}) \]

Using

\[\frac{T_{\text{sou}}}{T_{\text{sys}}} = \frac{P_{\text{on}} - P_{\text{off}}}{P_{\text{off}}} \]

With

\[\frac{T_{\text{sys}}}{T_{\text{cal}}} = \left[\frac{P_{\text{calc}} - P_{\text{off}}}{P_{\text{off}}} \right]^{-1} \]
PSW – Unbiased method – Results

Why does the correct result look so much worse?

Because we didn't account for T_{cal} yet!
PSW – Unbiased method – Recipe

How to calibrate your spectral data

- Position switch on (bright) continuum calibrator
 - Reduce using the advanced method to infer $T_{\text{sou}}/T_{\text{cal}}$
 - We know $S_{\text{calib}} \rightarrow$ expect $T_A(S_{\text{calib}}) = T_{\text{sou}}$ (A. Kraus talk)
 - Calculate T_{cal}

- Position switch on target source
 - Reduce using the advanced method to infer $T_{\text{sou}}/T_{\text{cal}}$
 - Apply T_{cal} spectrum
PSW – Unbiased method – Results

Scan: 1733 Subscan: 1

Tnew
Tclassic
PSW – Unbiased method – Results

Correct continuum slope!
PSW – Unbiased method – Results

RRL: H109α
PSW - Unbiased method - Results

RRL: H109α

Scan: 1733 Subscan: 1

Tnew = 3.51
Tclassic = 3.71
PSW – Unbiased method – Results

RRL: H112α

Classic: Line ratio wrong by 10% (systematically!)
Third conclusion

Extremely simple to incorporate freq. dependence

But

- Modeling not always robust, may need supervision (e.g., in case of standing waves)
- T_{sys} may not be stable between ON and OFF
- Weather can hurt a lot!
 → Solution: cross-scanning
- Frequency dependence also for opacity, Elevation-gain curve, taper function
- Must ensure receiver linearity (especially for T_{cal} determination)
Receiver linearity

\[G \cdot T_{\text{cal}} = \langle P^{\text{cal}} - P \rangle \] should not depend on \(T_{\text{sol}} \).
Frequency switching

Use a shift in frequency to obtain a reference spectrum. This can only remove the IF part of the gain!

\[
P_{\text{sig}}(\nu) = G_{\text{IF}} G_{\text{RF},-} \left[T_{\text{sys},-} + T_{\text{cal}} \right]
\]

\[
P_{\text{ref}}^{[\text{cal}]}(\nu) = G_{\text{IF}} G_{\text{RF},+} \left[T_{\text{sys},+} + T_{\text{cal}} \right]
\]
Frequency switching

Equations get lengthy...

\[T_{\text{sou},-} - T_{\text{sou},+} + \Delta T_{\text{sys}, \pm} = \left(T_{\text{sou},+} + T_{\text{sys},+} \right) \frac{P_{\text{sig}}^{[\text{cal}]} - P_{\text{ref}}^{[\text{cal}]}}{P_{\text{ref}}^{[\text{cal}]}} \equiv \tilde{T}_{\text{sig}}^{[\text{cal}]} \]

\[T_{\text{sou},+} - T_{\text{sou},-} - \Delta T_{\text{sys}, \pm} = \left(T_{\text{sou},-} + T_{\text{sys},-} \right) \frac{P_{\text{ref}}^{[\text{cal}]} - P_{\text{sig}}^{[\text{cal}]} }{P_{\text{sig}}^{[\text{cal}]}} \equiv \tilde{T}_{\text{ref}}^{[\text{cal}]} \]

\[\frac{1}{2} \left[\tilde{T}_{\text{sig}}^{[\text{cal}]} (\nu + \Delta \nu) + \tilde{T}_{\text{ref}}^{[\text{cal}]} (\nu - \Delta \nu) \right] = \]

\[T_{\text{sou}}(\nu) - \frac{1}{2} T_{\text{sou}}(\nu + 2 \Delta \nu) - \frac{1}{2} T_{\text{sou}}(\nu - 2 \Delta \nu) + T_{\text{sys}}^{[\text{cal}]}(\nu) - \frac{1}{2} T_{\text{sys}}^{[\text{cal}]}(\nu + 2 \Delta \nu) - \frac{1}{2} T_{\text{sys}}^{[\text{cal}]}(\nu - 2 \Delta \nu) \]
Frequency switching

But what about calibration?
Frequency switching

But what about calibration?

Short answer:

It's “possible”, but don't!
Frequency switching

Problems/drawbacks of frequency-dependent calibration

- Modeling rarely robust (also needs flagging of spectral lines)
- Source continuum not reconstructed
- Only viable if $G_{RF,+} = G_{RF,-} \leftarrow$ never true in reality!
- Produces awful baselines (yet correct)

See Winkel, Kraus & Bach, A&A 540, 2012 for details
PSW vs. FSW

Simulated inputs
PSW vs. FSW

Unbiased PSW

PSW vs. FSW

Classic PSW
PSW vs. FSW

Unbiased FSW

T [K]

ν [MHz]
Summary

- Frequency-dependence must not be neglected
- Easy to incorporate for PSW, but not for FSW
- Can be less robust than classic scheme → Supervision may be necessary
- Calibration needs time
A final warning

Do not use the Gildas/class fold command!

See Winkel, Kraus & Bach, A&A 540, 2012 for details
A final warning

Do not use the Gildas/class fold command!

See Winkel, Kraus & Bach, A&A 540, 2012 for details