Holographic Measurements of the AEM ALMA Antennas

Robert Laing (ESO)

[on behalf of many people at ESO, JAO and NRAO, particularly Pascal Martinez, Jaap Baars, Darrel Emerson and Samantha Blair]
Alma Numbers

- Aperture synthesis array optimised for wavelengths of 1cm – 0.3mm (35 – 950 GHz)
- High, dry site, Chajnantor Plateau, Chile (5000m)
- 54 12m + 12 7m antennas
- Baselines from ~15m to 16km.
- Resolution/ arcsec ≈ 0.2(λ/mm)/(max baseline/km)
 5 mas for highest frequency/longest baseline
- Field of view / arcsec ≈ 17 (λ/mm) [12m dish]
- Sensitive, wide-band (8 GHz) receivers; full polarization
- Flexible digital correlator giving wide range of spectral resolutions.
- Software
Receiver Bands

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Transmission

Frequency [GHz]
Antenna Performance Specifications

- 12m diameter, primary F/D = 0.4, Cassegrain optics, final F/D = 8
- Frequency range 35 – 950 GHz; hence total surface accuracy <25 μm rms
- Non-repeatable residual delay <15 μm
- 2 arcsec rms absolute; 0.6 arcsec rms offset pointing
- >6 deg/s Azimuth, >3 deg/s Elevation speed
- Fast switching (1.5 deg move, 3 arcsec within 1.5 s, 0.6 arcsec within 2 s)
- On-the-fly and mosaic requirements
AEM 12m antennas
AEM Antennas

- 25 of the 54 12m antennas procured by ESO
- Designed and built by the AEM Consortium: Thales Alenia Space, European Industrial Engineering, MT Mechatronics
- First antenna provisionally accepted in April 2011; the last in September 2013
- Key design features:
 - Steel mount; insulated
 - Moving part of the elevation structure (including receiver cabin) is entirely CFRP
 - Electroformed Ni-Al panels on CFRP back-up structure
 - Direct drive motors
 - Al subreflector on 5-axis support
 - Thermal and wind metrology systems (talks tomorrow)
More on Surface Specifications

Under primary operating conditions (<10 m/s wind, ...), the rms surface accuracy must not exceed 25 μm rms

- Includes primary, secondary and any misalignments between them
- Measured normal to boresight; calculated with 12dB edge taper
- Assumes refocus every 30 min
Primary Surface Setting

- **Near-field holography (Baars et al. 2007)**
 - 104 (79) GHz
 - Double receiver with reference horn
 - Transmitter at 400 m distance implies fixed (low) elevation
 - Raster scan
 - Measurement error specified to be <10 μm rms; in practice, reproducibility 2-4 μm rms

- **Panel setting**
 - Initial setting by laser tracker: 30-40 μm rms
 - 2-3 iterations based on holography results
 - 120 panels in 3 rings
Surface measurement after final setting

Surface rms 10.9μm

Limit at ≈10.5μm
Measurement Reproducibility

rms difference between successive maps with horizontal and vertical scan patterns = 1.6μm
Thermal effects at OSF

Temperature - dependent surface
Mostly 0 - 90 deg astigmatism
Temperature dependence: Zernike Model

Model the temperature-dependence of the surface using Zernike polynomials

Dominant terms are 0 - 90 deg astigmatism and spherical aberration

Linear in temperature

Without further adjustment, surface would be out of specification at lower end of operating temperature range

Bias the surface setting to optimise at \(\approx 0 \) C (range is -20 to +20 C)
Surface error prediction

Biased Restricted (n<37) Wtd. Zernike Surface Error vs. Temperature for DA41 data

Thermal Effect Wtd. r.m.s. Surface Error (μ.m.)

Ambient Temperature, T (°C)
Error Budget

Overall surface error
- **Best estimate**: 22.6μm
- **1σ upper bound**: 23.5μm
- **Specification**: 25.0μm

Surface Accuracy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Total RSS</th>
<th>Uncertainty</th>
<th>Weight</th>
<th>Contrib</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holography</td>
<td>10.8</td>
<td>0.1</td>
<td>0.34</td>
<td>0.05</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Measured surface rms</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude noise</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Allowance in original budget</td>
<td>4.4</td>
<td>0.5</td>
<td>0.46</td>
<td>0.08</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Panels</td>
<td>4.1</td>
<td>0.4</td>
<td>0.26</td>
<td>0.08</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Small scale errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Ageing</td>
<td>2.9</td>
<td>1.0</td>
<td>0.10</td>
<td>0.10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gravity</td>
<td>2.9</td>
<td>1.0</td>
<td>0.15</td>
<td>0.15</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Wind</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Absolute Temp</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Temp Gradients</td>
<td>0.9</td>
<td>0.9</td>
<td>0.33</td>
<td>0.30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DLIS ageing?</td>
<td>1.0</td>
<td>1.0</td>
<td>0.05</td>
<td>0.05</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Baking Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity Ideal</td>
<td>9.3</td>
<td>0.0</td>
<td>0.46</td>
<td>0.46</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Gravity deviation</td>
<td>1.0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Absolute Temp</td>
<td>9.1</td>
<td>0.1</td>
<td>0.45</td>
<td>0.42</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Temp Gradients</td>
<td>6.6</td>
<td>0.0</td>
<td>0.33</td>
<td>0.30</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>DLIS ageing?</td>
<td>1.0</td>
<td>1.0</td>
<td>0.05</td>
<td>0.05</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Panel Mounting</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Absolute Temp</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Temp Gradients</td>
<td>0.9</td>
<td>0.0</td>
<td>0.00</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Panel location perp</td>
<td>0.9</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Gravity</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4.5</td>
<td>0.4</td>
<td>0.72</td>
<td>0.09</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Gravity</td>
<td>2.7</td>
<td>0.4</td>
<td>0.13</td>
<td>0.05</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Wind</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Absolute Temp</td>
<td>6.0</td>
<td>0.5</td>
<td>0.05</td>
<td>0.02</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Temp Gradients</td>
<td>1.0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Ageing</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Alignment</td>
<td>1.3</td>
<td>0.4</td>
<td>0.00</td>
<td>0.00</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Surface excluding allowance</td>
<td>402.77</td>
<td>500.21</td>
<td>11.78</td>
<td>1.00</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Square root</td>
<td>20.07</td>
<td>22.37</td>
<td>1.00</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface with allowance</td>
<td>500.21</td>
<td>510.88</td>
<td>22.6</td>
<td>0.0</td>
<td>23.6</td>
<td></td>
</tr>
</tbody>
</table>
Interferometric Holography at AOS

- Method (Scott & Ryle 1977)
 - Scan the antennas under test across a bright quasar in a raster (or, more recently, star) pattern
 - Use a subset of antennas to provide reference amplitude and phase
 - Tests complete optics, but with limited spatial resolution (~1m on primary surface)

- Details
 - 230 and 345 GHz (problems with illumination at 90 GHz)
 - Water vapour radiometer phase corrections used
 - Frequent boresight calibrations
 - 15-20 antennas, ~5 used as references
 - Compare H and V polarizations/upper and lower sidebands to check internal accuracy (typical differences are a few μm rms)
Results (DA41 and DA43)

DA41
rms = 11.3 μm
T = -5.5°C
Elevation 41 deg

DA43
rms = 13.1 μm
T = -3.1°C
Elevation 71 deg

High-order Zernike modes e.g.
\(Z_{10} = r^3 \sin 3\theta \)
\(Z_{25} = 20r^6 - 30r^4 + 12r^2 - 1 \)
Little Temperature Dependence

Predicted temperature variation of surface rms of Zernike model

Zernike fit to surface map
Worst case (DA45)

17.0 μm rms

Similar high-order Zernike terms to DA41 and 43

Additional large 0-90 deg astigmatism term (Z₄)

No significant dependence on temperature
Surface accuracy from interferometric holography

- Bands 6 and 7; night-time only
- Rms
 - Best 10.5 μm; worst 20.5 μm
- Small-scale structure
 - Interferometric holography has limited resolution (approximately 1m on the primary for the current datasets)
 - Best estimate for additional rms on smaller scales is 9.9 μm (added in quadrature)
- Results
 - All antennas in specification (<25 μm)
 - Best 14.4 μm; worst 22.7 μm; mean 18.6 μm.
Surface degradation after 2 years

2011: rms 10.9 μm

2013: rms 13.7 μm
Next Steps

- What causes the (consistent) residual pattern on the best set antennas?
 - Wrong correction for holography receiver feed horn?
- Why the spread in surface accuracy?
 - Error does not depend very much on temperature or elevation
 - Dependence on receiver/feed horn used to set the primary surface?
 - Error pattern looks like the thermal model - incorrect bias?
 - Return worst affected antenna to OSF, repeat tower holography, check for changes and reset surface based on results
- Why is the thermal behaviour apparently different at OSF and AOS?
 - Thermal bias worked well for some antennas, not for others
- Incremental adjustments to the surface at AOS?
 - Done for APEX, but safety concerns
 - Test source planned to give panel-scale resolution
Lessons

- A holography system is for life, not just for Christmas
 - Engineering for reliability and repeated use
- Be very careful of components which require a software correction
 - Feed horn
 - Careful comparison of measurements from different receivers/horns
- Measure temperatures properly
 - Careful positioning of sensors
- Calibrate as often as possible
Summary

- 25 AEM 12m ALMA antennas have been set using tower holography with a typical primary surface rms of 11 μm.
- Interferometric holography at the 5000m site show that all of the antennas measured so far meet the full surface accuracy specification of 25 μm rms under good night-time conditions.
- The best antennas are set to ~15 μm rms; further work should allow the remainder to reach the same level.
- Much more to do on day-time observations, thermal transients,