

European Research Council

Test Theories of Gravity via BH Shadows and Modeling of Relativistic Jets

Yosuke Mizuno Institute for Theoretical Physics Goethe University Frankfurt

Collaborators:

Ziri Younsi, Christian Fromm, Oliver Porth, Mariafelicia De Laurentis, Hector Olivares, Heino Falcke, Michael Kramer, Luciano Rezzolla

Mizuno et al. 2018, Nature Astronomy, published

IAU Symposium 342 -Perseus in Sicily: from black hole to cluster outskirts, Noto, Italy, 13-18 May 2018

Event Horizon Telescope

International collaboration project of Very Long Baseline Interferometry (VLBI) at mm (sub-mm) wavelength

the earth, using the shortest wavelength

D ~ 10,000 km $=>\lambda/D\sim 25$ µas Event

Horizon

Telescope

Two main targets: Sgr A* & M87

Predicting the realistic BH shadow image

- Milimetre (submm)-VLBI of EHT will be achieved the event horizon scale observation (BH shadow image) in near future
- Ingredients for realistic theoretical image of BH shadow
- 1. Plasma behaviour surrounding BH

Consider time evolution of accreting matter onto BH and formation of relativistic jets

2. Radiation process

Consider GR effects (geodesic, redshift), thermal/non-thermal radiation process, optical thickness etc.

3. BH spacetime

- 4. VLBI array configuration and schedule
- Tools: General Relativistic MHD code + General Relativistic Radiation Transfer code + synthetic imaging

Which gravitational theory?

- Future mm/sub-mm VLBI observation of EHT will provide the first images of the BH shadow in our galactic centre, Sgr A* & M87.
- If the observations are sufficiently accurate, it will provide
 - the evidence for the existence of an event horizon
 - Testing the no-hair theorem in GR
 - Testing of GR itself against a number of alternative theories of gravity.
- Reasonable to use a model-independent framework which parametrises the most generic BH geometry though finite number of adjustable quantities.
- Recently new parametric framework of generic metric is proposed in spherically symmetric BH (Rezzolla & Zhidenko 2014) and in axisymmetric BH (Konoplya et al. 2016)

Dilaton Black Holes

- For first test, consider non-rotating Dilaton black hole. (coming from Einstein-Maxwell-dilaton-axion (EMDA) gravity which is the low energy limit of the bosonic sector of the heterotic string theory)
- When both the axion field and the BH spin vanish, such a BH is described by spherically symmetric metric

$$ds^2 = -\left(rac{
ho-2\mu}{
ho+2b}
ight)dt^2 + \left(rac{
ho+2b}{
ho-2\mu}
ight)d
ho^2 + (
ho^2+2b
ho)d\Omega^2$$
 (Exact form)

 $r^2 = \rho^2 + 2b\rho$, $M = \mu + b$ r: radial coordinate, M: ADM mass, b: dilaton parameter

- It is clear that if b=0, we reproduce Schwarzschild BH metric.
- Use Rezzolla & Zhidenko parameterized metric to describe non-rotating Dilaton BH metric

Dilation vs Kerr

- Does Dilation BH mimics Kerr BH?
- Three characteristic radius: horizon radius, photon orbit, ISCO
- Larger dilation parameter makes smaller horizon radius, Photon orbit, & ISCO
- Similar to Kerr spin parameter.
- How affects for plasma behaviour and radiation signature (BH shadow image)?

3D GRMHD simulations

• 3D GRMHD simulations of magnetized torus with a weak poloidal magnetic field loop accreting onto Kerr BH (a=0.6) & ISCO-matched dilaton BH (b=0.5)

3D GRMHD simulations

- 3D GRMHD simulations of magnetized torus accreting with a weak poloidal magnetic field loop onto Kerr BH (a=0.6) & ISCO-matched dilaton BH (b=0.5) by BHAC
- Azimuthal & timeaveraged density (left) and magnetization (right) [-]/WD
- Time averaged over the interval t=11000-12000M which is reached quasi-steady state (turbulence is fully developed)

 10^{1}

 10^{0}

0

2000

4000

6000

 $\phi_{\rm B}$

Kerr

 $\Phi_{_{\rm R}}$

14000

12000

10000

8000

t [M]

Dilaton

 Overall plasma behaviour is very similar in both cases but high magnetized jet spine region is different (dilaton BH is weaker than Kerr BH).

BH shadow image

Intensity map @ 230GHz, i=60 deg, time-averaged (t=11000-12000M) by BHOSS

- Emission model (fixed $T_i/T_e=3,\,\dot{M}\sim 10^{-9}M_\odot\,{
 m yr}^{-1}$
- BH shadow image is quiet similar ... but we see some difference
- Pixel-by-pixel difference shows smaller shadow size by dilaton BH (blue ring), and offset & asymmetry of shadow by Kerr BH (red ring)
 Put this is "infinite recelution images"
- But this is "infinite-resolution images"

Synthetic Imaging (VLBI array)

- Consider realistic properties of VLBI array & stations adjusting April 2017
 EHT observations
- For the synthetic images we use 6h observation time, 420s scan length, 12s integration time, and include interstellar scattering.

UV plane & visibility amplitude

03:00) 04:00	05:00	06:00	07:00	08:00	t [UCT] 09:00	10:00	11:00	12:00	13:00	14:00	15:00	Chose ۲	en observation parameter
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UV-coverage 05	3:00-15:00	$ \begin{array}{c} 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ -2 \\ -4 \\ -6 \\ -8 \\ b\end{array} $	UV-coverage	6r	\mathbf{N}_{-}^{-} \mathbf{N}		ge 06:00-12:00	h = 10 8 6 4 2 0 -2 -4 -6 -8			J	Parameter scan length integration time	Value 420 s 12 s
-10 -10	-8 - 6 - 4 - 2 0 U [10 ⁹]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 -10 -8	-6 -4 -2 0 U [10]	2 4 6 8	1 - 10	8 -6 -4 -2 U	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-8 - 6 - 4 - 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 10	off-source time	600 s
4.0	UV-coverage 0	3:00-15:00	4.0	UV-coverage	03:00-09:00	4.0	UV-coverag	ge 06:00-12:00	4.0	UV-coverag	ge 08:30-14:30	MA	start time	2017:097:08:30:00 (UT)
3.5		APEX JCMT	3.5 3.0		APE PDB	3.5 3.0		AF JC	PEX 3.5 MT 3.0		AP. JCI	EX MT	end time	2017:097:14:30:00 (UT)
Amplidute [J]		LMT PDB PV SMT SMA SPT	2.5 2.0 1.5 1.0 0.5 f	<u>`</u>	PV SPT		3 4	LM PV SM SP	AT 2.5 AT 2.0 AT 1.5 AT 1.0 DT 0.5		LM SM SP		using eht	4096 MHz
0.0	2 4 UV-distance	6 8 - [10 ⁹ λ]	10 0	2 4 <i>UV</i> -distan	6 8	10 0	2 4 UV-dist	6 8	10 0	2 4 UV-dist	6 8	10	mouules	

Synthetic imaging (visibility amplitude)

Very similar visibility amplitude and phase in Kerr and dilaton BHs

Synthetic Imaging (shadow image)

reconstruction: BSMEM with 50%

- Convolved GRRT images: already smeared out of sharp emission features
- Reconstructed images: mapped critical features of BH images (e.g., crescent shape)
- interstellar scattering: increases the blurring of these features

Image-Fidelity assessment

Image 1	Image 2	$MSE_{1,2}$	DSSIM _{1.2}		
Kerr a	Kerr b [Kerr c]	0.016 [0.016]	0.31 [0.31]	image 1: convolved	
Dilaton d	Dilaton e [Dilaton f]	0.016 [0.016]	0.40 [0.35]	image 2: reconstructed	
Kerr a	Dilaton e [Dilaton f]	0.018 [0.015]	0.33 [0.30]		
Dilaton d	Kerr b [Kerr c]	0.016 [0.016]	0.37 [0.37]		

- More quantitative comparison, use two image-comparison metrics; the mean square error (MSE) and the structural dissimilarity (DSSIM) index
- Small values indicate the prominent features of the original convolved images are well-matched in the reconstructed images in both BH cases (*first two lows*)
- *But* similar matches are obtained when comparing the convolved image of a Kerr BH with the reconstructed image of a dilaton BH and vice-versa (*3rd & 4th lows*)
- It is presently difficult to distinguish between a Kerr BH and a dilaton BH on the basis of BH shadow images alone.

Future development: addition two african telescope @ 340 GHz

- Consider addition of two african telescopes + 12 hour observation at 340 GHz with 16GHz bandwidth.
- The reconstructed images agree very well with GRRT convolved images and show very detail features.
- Technological developments will improve the ability to distinguish BH spacetimes from shadow images alone, motivating further work in this direction.

-50

Relative R.A. $[\mu as]$

-100

50

100 - 100

-50

Relative R.A. $[\mu as]$

50

100

Complementarity to imaging (pulsar timing obs. in the vicinity of Sgr A*)

- Pulsar timing obs. is probing the far field,
- BH shadow image is probing the **near field**.
- Shadow size and shape depends on BH mass and spin and inclination angle, a suitable pulsar can provide these parameters with high precision (0.1~ 1%).
- The image itself might not be able to identify deviations from a Kerr spacetime due to correlations, a suitable pulsar can help to break such correlations.

Modeling of Relativistic Jets

Fromm et. al. (2018)

Jet Model (RMHD simulation)

- Perform 1D RMHD simulations of propagating jets with power-law atmosphere (Porth & Komissarov 2014)
- initial values: $ho_j=0.01
 ho_a$ $\Gamma=4$ $\hat{\gamma}=13/9$ $\kappa=1.0$
- change magnetisaion $\sigma = b^2/w$

 $\sigma \uparrow \;\; \Rightarrow \; {\rm less \; recollimation \; shocks}$

1

0

-2.0

0

-1

1

0

-1

x [mas]

-2

-3

y [mas]

y [mas]

 $\sigma = 1.0$

 $\log(\mathbf{S}) \begin{bmatrix} \mathbf{J}\mathbf{y} \end{bmatrix}$

 $^{-1}$

x [mas]

 $\log(S)$ [Jy]

 $^{-1}$

x [mas]

 α [1]

 $^{-1}$

x [mas]

-2

-2

SPIX

0.0

-2

 $^{-2}$

86 GHz

_

0

0

0

1

-2

43 GHz

Synthetic imaging

match 3C279 (z=0.5) : 📲 radio spectrum +15GHz VLBA image

Summary

- It is presently difficult to distinguish between a Kerr BH and a dilaton BH on the basis of BH shadow images alone.
- The results focus on a specific example of a non-GR BH solution (nonrotating dilaton BH) and do not consider the case of extremal black holes and other exotic objects.
- Several future developments can improve our ability to discriminate between GR and alternative theories of gravity using shadow images
 - Advanced image reconstruction algorithms
 - Increases in observational frequency (e.g., 340 GHz) and bandwidth (e.g., 8GHz)
 - Additional VLBI antennas (e.g., in Africa)
 - Source variability and timing measurements
 - Concurrent multifrequency spectroscopic & spectro-polarimetric observations together with horizon-scale VLBI shadow images
- Pulsar timing observations in the vicinity of Sgr A* also have the potential to impose strict constraints on the underlying theory of gravity
- Theoretical jet simulation pipeline would be useful for modelling various relativistic jets.