Extragalatic Relativistic Jets

M. Orienti

(INAF-IRA)

- Relativistic jets and the extragalactic γ -ray sky
- Radio and y-ray connection
- The case of 3C 84

Relativistic jets

- Bipolar outflow of relativistic plasma produced in ~10% of AGN
- Different morphology depending on the jet power

Low power: bright decollimated jets

10 05 22,10 22.08

• Linear size from a few pc to a few Mpc

Relativistic jets: viewing angle

Depending on the viewing angle:

Relativistic jets: viewing angle

Depending on the viewing angle:

See Torresi's talk

Broad-band non-thermal emission

Non-thermal emission

• Low energy: **synchrotron**

Relativistic electrons can scatter low energy photons

- external photons from torus, disk, BLR, CMB, EBL,... (EC)
- their own synchrotron photons (SSC)

• High energy: inverse Compton

Connection between low and high energy emission: the **blazar sequence**

The extragalactic γ-ray sky: the EGRET Era

- 67 blazars detected by EGRET
- Mostly FSRQ (75% FSRQ, 25% BL Lacs)
- Only 3 *tentative* detections of radio galaxies:
- Centaurus A
- NGC 6251 (Mukherjee+02)
- 3C 111 (Hartmann+08)

The Fermi Gamma-ray Space Telescope

Large Area Telescope (LAT)

the first all-sky survey in γ rays, covering 20% of the sky at any instant from 20 MeV to >300 GeV

The extragalactic y-ray sky: the Fermi Era

6 AGNs

Abdo+09

50 Blazars with unknown type 26 AGNs Abdo+10

156 Blazars with unknown type 24 AGNs Nolan+12

The Third LAT AGN Catalogue

- 1591 (1444) sources with TS>25
 |b|>10°(71% more than in 2LAC)
 182 low-latitude AGN (24 FSRQ, 30 BL Lacs, 125 BCU, 3 non-blazar AGN)
- 467 FSRQ
- 632 BL Lacs
- 460 BCU (~50% new 3LAC sources)
- 32 non-blazar AGN

The Third LAT AGN Catalogue

4FGL is in preparation and will be public soon!!

Radio and y-ray correlation

LBAS: 3-month survey CRATES 8.4-GHz data

1LAC: 11-month survey AT20G 20-GHz data

3LAC: 4-yr survey 1.4-GHz data

Tentative correlation

Note: small biased sample

Significant (>3 σ) correlation

Significant (> 3σ) correlation

Note: correlation gets stronger when considering **non-variable** Fermi sources (Mahony+10)

Radio and y-ray correlation

LBAS: 3-month survey CRATES 8.4-GHz data

1LAC: 11-month survey AT20G 20-GHz data

3LAC: 4-yr survey 1.4-GHz data

Tentative correlation

Note: small biased sample

Significant (> 3σ) correlation

Significant (> 3σ) correlation

Note: correlation gets stronger when considering **non-variable** Fermi sources (Mahony+10)

See Lico's talk

Variability

Relativistic jets viewed at small angles are highly variable at all wavelengths A large fraction of Fermi-LAT blazars (69% FSRQ, 23% BL Lacs) are variable

Variability timescale and the time-delay observed at different wavelength provide clues on the emitting region (size, location, seed photons) and the physics involved

Single-dish studies of large samples: F-GAMMA

Cross-correlation between the γ-ray and radio light curves of a sample of 54 Fermi blazars observed between 11 cm and 2 mm. Fuhrmann+14 Additional 0.8 mm APEX data for 25 blazars.

γ-ray leads the radio variability

Time delay increases with frequency:

- 76±23 days at 11 cm
- 7±9 days at 2 mm

The γ-ray/radio distance decreases with frequencies:

- 9.8±3.0 pc at 11 cm
- 0.9±1.1 pc at 2 mm

Single-dish studies of large samples: Metsähovi

Cross-correlation between the radio and γ-ray light curves of a sample of 60 Fermi blazars observed at 37 GHz.

Radio leads the γ-ray variability in FSRQ

Time delay between the onset of the mm flare and the peak of the γ-ray flare

- 70 days observer frame
- 30 days source frame

The γ -ray region should be located ~ 7.4±1.3 pc downstream along the jet:

No obvious radio/γ-ray correlation in BL Lacs

Multi-v analysis: PKS 1510-089

- First γ -ray flare with no obvious radio counterpart Second γ -ray flare close in time with the mm flare
- Time lags increase with wavelength: opacity effects

- First γ-ray flare with no ejection of superluminal components vicinity of BH?
- Second γ-ray flare close in time with the ejection of a superluminal component at pc-scale distance?

Shock-in-jet model: where? how?

Radio/ γ -ray time lag depends on the location of the shock

Not only shocks: the two-zone model

The characteristics of radio galaxies and "low-power" BL Lacs suggest a "structured jet" with a fast spine surrounded by a slower layer

Tavecchio&Ghisellini '08

- SSC + EC of spine (layer) photons
- No trivial radio and γ-ray correlation

Not only shocks: the two-zone model

The characteristics of radio galaxies and "low-power" BL Lacs suggest a "structured jet" with a fast spine surrounded by a slower layer

Tavecchio&Ghisellini '08

- SSC + EC of spine (layer) photons
- No trivial radio and -ray correlation

Supports from the observations: limb-brightened jet structure in FRI and BL Lacs:

3C 84: basic information

- FRI-type galaxy
- Radio lobes fill the X-ray cavities
- Radio variability

Multi-scale structure

- Recurrent radio activity •
- Fast structural changes •

See Nagai's talk

B: ~10 pc, ~ 50 yr **C:** ~1pc, ~10 yr

30.

20.

10.

The jet structure: 1995 - 2013

43 GHz VLBA

1995: ridge-brightened

800 700 M 600 M 600

2013: limb-brightened

Change in the jet PA

See Giovannini's talk

The gamma-ray emission

- Possible detection by COS B at energies > 70 MeV
- No γ -ray detection by EGRET
- •γ-ray emission detected in four-month Fermi-LAT observations

The gamma-ray emission

- Possible detection by COS B at energies > 70 MeV
- No γ-ray detection by EGRET
- •γ-ray emission detected in four-month Fermi-LAT observations

High and low activity stages in radio and high energies (X-rays and γ-rays).

The gamma-ray and X-ray emission

Fukazawa+18

Correlated X-rays and γ -rays variability on short and long timescales.

- Long-term: change of the emission region \rightarrow C3-jet structure
- Short-term: injection of fresh particles accelerated in a shock → core Hodgson+18, Tanada+18

See Fukazawa's talk

Fermi-LAT monitoring of 3C 84

Change in the hardness ratio around begin of 2011

- A: injection of high-energy electrons
- **B**: change of the Lorentz factor and/or angle to our line of sight

SED modeling: SSC

Tanada+18

Epoch	State	$R \ [\mathrm{cm}]$	B [G]	$K [\mathrm{cm}^{-3}]$	n	γ_{\min}	$\gamma_{ m brk}$	$\gamma_{ m max}$	δ	$\Gamma_{\rm b}$	θ [°]
А	Quiescent	0.8×10^{18}	0.04	45	2.6	10.0	$0.8 imes 10^3$	$2.5 imes 10^5$	2.7	2.0	20
	Flare 1	0.7×10^{18}	0.04	50	2.6	10.0	1.0×10^3	$4.0 imes 10^5$	2.7	2.0	20
	Flare 2	0.6×10^{18}	0.04	50	2.6	10.0	1.8×10^3	3.5×10^5	2.7	2.0	20
В	Quiescent	1.0×10^{18}	0.04	48	2.6	10.0	$0.8 imes 10^3$	1.0×10^5	2.7	2.0	20
	Flare 3	0.4×10^{18}	0.04	270	2.6	10.0	0.7×10^3	1.0×10^5	3.6	3.3	16

Spine-layer scenario: 3C 84

Limb-brightened structure may be the observable manifestation of a structured jet.

Spine-layer model well reproduces the SED with $\theta \sim 18^{\circ}$.

 θ > 20° unlikely due to strong internal absorption.

Summary

- Radio-loud AGN dominate the γ -ray sky
- Empical correlation between radio and γ -ray emission
- Time lags are usually present between radio and γ -ray variability
- 3C 84 shows changes in radio structure and γ-ray emission on long and short time scales
- Now the jet has a clear limb-brightened structure, opposite to the ridgebrightened structure observed in the '90
- High-energy emission may come from different regions

BACK UP SLIDES

Fermi-LAT Variability

Fermi-LAT scans the full sky every 3 hr and is a golden mine for flare hunters!

Public light curves for ~150 sources that underwent a flare in -rays:

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/

Pushing further: Fermi-LAT ToO

Sub-orbital light curve of 3C 279

Ackermann+16

First time that a **doubling time < 5 min** was observed in the GeV band

Very compact region of ~100 Rs from central engine in a conical jet

Gamma-ray beyond BLR

Analysis of 7.3 yr Fermi-LAT data of 106 FSRQ

2/3 no absorption at E > 20 GeV

1/3 curvature at E > 20 GeV, but can be intrinsic

No BLR absorption in both high and low-activity states

Costamante+18

On average, Gamma-ray emission produce outside the BLR

The y-ray region

Pc-scale distance \longrightarrow Causality argument < 10^{16} cm

Large changes in the - inner jet position angle

Jet knot occupies only a fraction of the jet cross-section

Flux variability

