Characterizing the Outburst of the Super Massive
Black Hole in M87
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Outburst up close
Classic shock

Buoyant bubbles and their filaments

Energy partition and outburst duration
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Supermassive Black Hole Outbursts in the Family of
Massive Early Type Galaxy Atmospheres
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Powerful outflows

Little radiation from black hole - radiatively inefficient accretion
ADAF -like systems (see Yuan & Narayan 2014 for review)

Gas cooling rates vary by > 100x

Span a wide range of dark matter halo mass



Virgo Cluster and M87 = . -

Old: RQGSAT PSPC
Messier, 1781 =>  Age > 200 yr : .
Mean stellar age ~ 10 Gyr

Popular:
~5800 papers (NASA ADS) => Most
popular elliptical galaxy in the

observable Universe with 360,000
citations

1’=4.65 kpc; 20:6.5 Mp%J :
M87 - central dominant galaxy I g
hosts 3-6x109M_, supermassive

black hole and jet
-Classic cooling flow (24 M, /yr)

*Ideal system to study SMBH/gas
intferaction

465 kpc=1



Gas Sloshing in M87 (XMM)

M87 shows gas “sloshing”
"Edge", contact discontinuity - cold front at ~100kpc

(Simionescu+10 from XMM-Newton
Norbert Werner+16 argues for suppression of viscosity to
less than 10% of Spitzer value

Very common (14/18) in "peaked” clusters (Markevitch+03)

see Markevitch & Vikhlinin 2007; Bykov+15 for reviews

Driven by (minor) mergers

Mild compared to Perseus - M87 core is less disturbed



Chandra view of M87
"Raw" images
Just select different energy bands
See the over-pressurized regions = shocks

Soft band X-ray T Stars - have no clue
i/ § S about the excitement

Hard X-ray - pressure , Matched scales

Isobaric arms (Arevalo et al. 2016)
Xarithmetic (Churazov et al. 2016)



Weak shock

~100 Myr - old (radio) bubbles —__ |
~40 Myr - torus & uplifted arms |
~12 Myr (12 kpc) - shock

to observer

now - re-inflating cavity

Radio

- Outer radleo lobe

~ Softband X-ray Hard X-ray

16y bubble

Radlo cocoon

1 Fastérn X-ray arm

Duter radlo lobe
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Buoyant (radio) bubbles
Cool, uplifted arms

e classic buoyant bubble
with torus i.e., "smoke
ring" (Churazov et al
2001)



 Current outburst

- Re-inflating an existing bubble
(that drove main shock)

* Present cavity is an inclined R ,, b
(10-20 degree to LOS) cylinder B G ey IR
- Sequence of bubbles
» Bud (few x 106 yrs; 1055 ergs
- Series of "Bubbles" to SE
* Radio torus farther east

"Bud"”

Soft band X-ray




M87 - not rich in cold gas

Reference: Cool X-ray gas mass in arms ~10% Mgyn

Cold gas image Ha + [NII] from Norbert Werner+10 (Fig. b)
- see also Sparks+93 ,+04

Molecular gas mass < few 106 Msun (Salome & Combes 2008)

* in each of several pointings covering central region

Werner+10
(Fig. B)

L

Ha mass 105-107 Msun (Sparks+93)

CO detected with ALMA (Simionescu +18) in outer filament (M(H;)
~ H5x105 Msun)
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Rising bubble loses energy to

Fate of Bubble Energy surrounding gas
f=(p1/po) 0

Generates gas motions in wake

Kinetic energy (eventually)
converted to thermal energy (via
turbulence) -,

L3,

N ]

! non-relativistic

Bubble energy
remaining

. : | t- . t.
vs. radius el relativistic




Shocks (and Bubbles)

- SMBH powers jets

+ Inflates "bubbles” of
relativistic plasma

- Model to derive
detailed outburst
properties

Chandra (0.5-1.0 keV) Chandra (3.5-7.5 keV)

23 kpc (75 lyr)

Chandra VLA (6cm)

Comomier. 11 )

Central radio

cocoon is pis‘ron_>

Drives shock N i




Counts/s

Shock Model - the data

*Hard (3.5-7.5 keV) pressure
. soft (1.2-2.5 keV) density profiles
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Textbook Example of Shocks
Consistent density and tfemperature jumps

Rankine-Hugoniot Shock Jump Conditions
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P,/ p, =134

pz/p1=(
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/ Pre Sheck Value

[(y +1)+2y(M? - l)][(y +1)+(y-1)(M* - 1)]
(y +1)° M?>

T, /T, =

Poet Shock

‘Tz/T1=1.18‘ S

Mach Number

yield same Mach humber: M=1.2
(M.1.24 M =118)




Outburst Model - grid in total energy and duration
Forman et al. 2017
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Same duration = 2.2 Myr
Different Eiot = 1.4, 5.5, 22x1057

ergs)

Produces different central piston

sizes (observable)

Density, em™3

Temperature, keV

10-!

102

Radius, kpc

Eior = 5.5x10%7 ergs,
Different durations = 0.1, 1.1,
22,31,40,4,4,6.2 Myrs
Shock strength (nearly)
governed by Eiot

Match all constraints
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Characterizing M87's outburst -
Long vs. Short Durations

]
| 0.6 vs 2.2 Myr duration outbursts with
J EouTbursT = 55X1057 er‘gs

/
.

~. | envelope outside the piston

\j Not observed — longer duration
i outburst required

. . ... | size constrains outburst

1 h1
kpe

adach

Short outburst - leaves hot, shocked

Rapid Piston Ees Outer
(Relativistic Plasma) Outer A ‘ ;ﬁ (Relativistic Plasma) corona
corona G i
-, \
Shock
Strongly Weakly Shocked
Gas

Shocked Gas




M87 Outburst - superman or winnie?

Age ~ 12 Myr
Energy ~ 5x10%7 erg

Bubble 50%

Shocked gas 25% (25%
carried away by weak
wave)

_ Outburst duration ~ 1 Myr
s =N J Outburst is "slow”

Fast - hot, low density
shock heated region

Slow - dense,cool rim

D —




* Yool IS < Tage
* More than enough energy from SMBH in buoyant bubbles & shocks
* Plus mergers and gas sloshing 7 e

» But how, exactly, does the energy transfer occur?
see Irina Zhuravleva+14 and Thursday talk
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» Turbulent heating may be sufficient to
offset radiative cooling

- Balances locally!!

- May be key to heating hot coronae from e e
clusters to early type galaxies For M87 and Perseus

Turbulent heating rate (erg c
e

How is bubble energy distributed? Fruomo 4

Generation of by Buoyant Bubbles in @1
¥

Galaxy Clusters and Heating of the Intracluster Medium

see Zhang+2018 and Thursday talk
e Other mechanisms may contribute e.g. cosmic
ray heating (Svenja & Pfrommer 2017)



Family of dark matter halos from massive early type galaxies to
clusters ALL have hot atmospheres:
Key to capturing feedback - not perfect balance

M87 is the prototype shows details of shock/bubble energy partition
SMBH powers plasma outflow, drives shocks, creates bubbles

Bubble energy ~50% of total outburst energy
Shock - 25% of energy directly heats core £
Outbursts are “long” duration (~1 Myr): weak shocks
Heat radiatively cooling gas (5x1057 erg over 12 Myr)
Roughly matches radiated X-ray emission

X-ray filaments are:
uplifted, cool plasma
in pressure equilibrium
structure “governed" by buoyant bubbles -

Glimmer of unification of black holes, accretion modes, galaxy formation and
SMBH co-evolution ...



LYNX - 30 x Chandra’s area with <1” angular resolution
Growth of galaxy groups and 10° Mo black holes from z=6 to the present

Sloan quasar at z=6 “nursing home” at z=0 M87. Chandra. |” pixels
2 3 .. - Zul
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XMIS, z =0, 300 ksec

APSI, z =6, 300 ksec
Jet + gas
QsO
. =10% erg/s
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s / Region

- © . v Two Types of AGN accretion modes

Eload Line CI"OTOH +06

J Region

" Churazov +05
—__Accretion N\er'|0ni & Heinz 08

Digk

Best +05, +06, +07, +12
/

Obscuring
Torus

High excitation AGN
“standard"” picture (called

Low excitation AGN " "
quasar mode")

* massive, red galaxies

* NO strong emission lines

+ LACK accretion disk, broad line region, torus, ...

+ Accrete (some) cooling hot gas?

+ Advection-dominated accretion flows (ADAFs) - low Eddington
ratio accretion

- show "radio-mode" feedback




Radiative/Quasar vs. Radio/Jet Mode

Radiative-mode AGN Jet—mode AGN

5 Dominant
= Kadio Jet =

Radiatively faint
AGN

Different structure
to accretion disk at
low accretion rates

\
Advectin-dominated|
inner sccrction flow

accretion disk does
not reach ISCO

radiatively
inefficient but
mechanically e accretion energy advected into the back
efficient hole

accretion energy e drives outflows/jets
heats gas

e radio bright (but still low luminosity)
e see Yuan & Narayan 2013 for review



X-ray Astronomy - from Sco X-1 to Chandra

1962 - Detection of first non-solar X-ray

F’u? r‘ source Sco X-1
& E ° *First imaging solar X-ray telescope (Giacconi
—— 1963)

*About the same diameter and length as
Galileo’s 1610 telescope

3 inch diameter solar X-ray
‘relescope mirrors

| 57 ee1' (w|1-h 380 years later, Hubble is 108 times more
/ sensitive

*In 37 years X-ray astronomy achieved
comparable increase in sensitivity with launch of
Chandra

*Largest/heaviest (22000 kg) payload
launched by shuttle (Chandra+IUS)

Orbit goes 1/3 of distance to the moon (64
hour orbit)

*Power 2300 watts = 1 (good) hair dryer




Feedback (black holes + hot gas) and Baseball

Early type (bulge) galaxies - like a baseball team
Batter = SMBH - sometimes hits the ball (outbursts)
infrequent
exact trigger unknown
different sizes (walks, singles, ... home runs)
Pitcher = provides ball/fuel (cooling gas for accretion)
Hot X-ray emitting gas = fielders
capture AGN output

Fielders are critical
No fielders (no gas)
==> No energy capture
No feedback

Unifies SMBH, AGN activity, Gas Provides archive of
Galaxy properties (red/blue) AGN activity
X-ray cooling flows

S — ———




Zhuravleva+14 - Solving the “cooling flow” problem?

* for observed gas tcool iS < tage

* More than enough energy from SMBH in buoyant bubbles & shocks
* Plus mergers and gas sloshing

* But how, exactly, does the energy transfer occur?

10_24: T rrrrg T T T 11107 T T T 11117 T T T 11171

* Measure power spectrum of surface
brightness fluctuations
* Deproject to get density fluctuations

- 1D gas velocity = rms density
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fluctuations (see Irina Zhuravleva+14)

Turbulent heating rate (erg cm=3 s
)
&
I

» Turbulent heating may be sufficient
to offset radiative cooling

» Balances locally!!

- May be key to heating hot coronae
from clusters to early type galaxies

Perseus cluster N
Virgo cluster

10-28 ’"l.: 1 11 IIIIII 1 11 IIIIII 1 11 IIIIII 1 11 11111
10-28 10-% 10-26 10-3 10-#*
Radiative cooling rate (erg cm3 s-1)

For M87 and Perseus



Hitomi - Feb 2016 Bubble energy propagation?

Lines broadened - 0 = 164 km s-1 As Radially by bubble itself

predicted from fluctuations Azimuthally by internal waves
Bubble in a stratified atmosphere

Broadening from bulk flows? see Zhang+2018 and Thursday

Not likely - resonant scattering
results consistent with direct line
broadening (see 1710.04648.pdf)

Fe xxv Heo H sound Waves *

| 2z-001756

Turbulence

I . . 1 . . . ) [
6.50 6.55 6.60

E eV Other mechanisms may contribute
e.g. cosmic ray heating
(Svenja & Pfrommer 2017)



