X-ray probing of NGC 1275 nuclear region with Hitomi, Swift, and Suzaku

Yasushi Fukazawa (Hiroshima University)

IAUS342: Perseus in Sicily @ Noto

X-ray from NGC 1275

☆ Point-like source has been detected. Einstein/HXI, ROSAT/HXI, Chandra, XMM-Newton (e.g. Fabian+15)

☆ XMM-Newton detected Fe-K α (6.4keV) line. (Churazov+03, Yamazaki+13)

Fe-K 6.4keV is typical for Seyfert galaxies.

L/Ledd is low (10-^4 to 10^-3) Does normal torus exist ? Q: What is an origin of Fe-K line ? Torus as well as Seyfert galaxies ?

AGN Fe-K fluorescence line

Precise line spectroscopy with X-ray calorimeter is promising to measure a Fe-K line profile (center energy, width and shape, line structure ...)

AGN Narrow neutral Fe-K α line

- accretion disk? BLR → width > 2000 km/s
- Torus? Molecular disk? or Outer? -> <u>several 100 km/s</u>

☆ X-ray CCD cannot distinguish between 2000 km/s and several 100 km/s

☆ Grating spectroscopy of line width \rightarrow BLR? (e.g., Shu+10)

☆ Time scale (a few years) of X-ray variability of FeK → Torus? (e.g., Fukazawa+16)

Hitomi/SXS : Feb 25-27th and March 4-6th, 2016 (~240 ks)

SXI(CCD) took only a small mount of data. High-E X-ray instruments (HXI, SGD) was not yet operated.

Hitomi collaboration 2018, PASJ 70, 13

☆ The first fine spectroscopy ($\Delta E/E = 4.9 \text{ eV}/6 \text{ keV}$) of AGN Fe-K line ☆Line is simple (Ka1 + Ka2),, no multiple lines -→ almost not ionized Fe

☆ Center energy : 0.01700 ± 0.00063 (optical 0.017284 with WHT 4.2m)

☆ Width_ 500-1600 km/s (FWHM) considering Ka1/Ka2

Narrower than BLR (H α ~ 2750 km/s FWHM)

➔ Rule out an origin of accretion disk and BLR₀

 \Rightarrow EW ~ 10 eV against total continuum \rightarrow ~25 eV against AGN continuum)

 \Rightarrow No variability of Fe-K α intensity over 15 years - \rightarrow > >Several pc scale

☆ Constraint of extent of Fe-K with Hitomi/SXS → <42"=17 kpc

☆ Chandra U.L. at 4-30" = 1.6-12 kpc cannot explain the SXS intensity.

➔ Emission region : Several pc to 1.6 kpc -> Torus, Molecular disk, Outer region

Fe-K from the outer region: Molecular clouds

☆ Estimate fluorescence line intensity with M.C. using MONACO (Odaka+11)

☆ Assuming that molecular clouds illuminated by AGN and ICM continuum, → EW \sim 0.15 eV << 25 eV(SXS)

➔ Torus or Molecular disk

Torus or Molecular disk?

☆ Fe-K line width is consistent with [Fe II] line width 380–1000 km/s (FWHM) from molecular disk.

Prefer an origin of molecular disk

☆ Small EW of Fe-K (25eV) << 100-200 eV of typical Seyferts

Or peculiar torus wiith a small colune density ?

$$EW \sim 65 \left(\frac{Z}{1 \text{ solar}}\right) \left(\frac{f \cdot NH}{10^{23} \text{ cm}^{-2}}\right) \text{eV}$$

f·NH~3 × 10²² cm⁻²
M~4\pi r^2 f NH\mum_p ~4 × 10⁷ M
R=100 oc

How about NGC 1275 ? Fe-K line suggests a non-beaming X-ray continuum from the central engine. → accretion disk/corona ?

GeV emission has been detected by Fermi/LAT (Abdo+09). SED. Is almost expressed by SSC model, also in the X-ray band.

Q: X-ray continuum from disk/corona or jet ?

beaming

Derive a long-term X-ray light curve Suzaku/XIS every 0.5 yr in 2006-2015

Femi/LAT GeV gamma-ray

Fukazawa et al. 2018, ApJ 855, 93

The flux of NGC1275 has been increasing from radio, optical/UV, X-ray, and GeV gamma-ray, without any large change of SED shape.

C3 is likely an origin of the long-term flux increase.

Freshly accelerated electrons in the inner jet region (shock-in-jet)

17

Origin of X-ray Emission of GeV radio galaxies

Fukazawa+14

Source	Fe-K line	X-ray spectral index	X-ray variability	[O III] line	Type [ref.]
3C 78	jet	jet	inconclusive	jet	LERG [B10]
NGC1275	disk/corona	inconclusive	inconclusive	disk/corona	$HERG/LERG^{\dagger}$
3C111	disk/corona	inconclusive	inconclusive	disk/corona	HERG [‡] [E00]
3C120	disk/corona	inconclusive	inconclusive	disk/corona	HERG [‡] [E00]
$\rm PKS0625{-}354$	jet	jet	inconclusive	jet	LERG [M14]
M 87	jet	jet	jet	jet	LERG [G13]
Cen A	disk/corona	inconclusive	jet	inconclusive	HERG [E04]
$\operatorname{NGC}6251$	jet	inconclusive	inconclusive	jet	LERG [E11]

For low excitation radio galaxies (LERG),

X-ray emission is likely to be a jet origin.

For high excitation radio galaxies (HERG),

X-ray emission is likely to be a disl/corona origin.

Summary

Hitomi/SXS obs of NGC1275 for the first time performed a fine spectroscopy of AGN Fe-K. X-ray flux well correlates with GeV gamma-ray.

XARM ... variability of Fe-K and 10-20keV continuum Athena ... More on Fe-K spectroscopy (S/N, large EW) and continuum

Origin of X-ray Emission

Fe-K line EWs of PKS0625-354, 3C78, M87, NGC6251 are smaller than those of typical Seyfert galaxies.

X-ray luminosity of PKS0625-354 is higher than that of typical Seyfert galaxies with a similar [O III] luminosity.

	Baseline	Change	Steady	Flare
Г	2.3	$\times 2$	same	same
B [G]	0.035	$\times 2$	same	same
t_{v} [Ms]	13.4	×3.3	8.94	0.50
p_1	2.1		same	2.0
p_2	3.1	-0.2	same	2.0
γ_{\min}	8×10^2		same	same
$\gamma_{\rm max}$	4×10^5	$\times 10$	same	4×10^{6}
7 brk	9.6×10^2		same	same
$P_{j,B} [10^{40} \text{ erg s}^{-1}]$ $P_{j, e} [10^{40} \text{ erg s}^{-1}]$	$\begin{array}{c} 0.24 \times 10^4 \\ 2.0 \times 10^4 \end{array}$		$\begin{array}{c} 0.11 \times 10^4 \\ 3.0 \times 10^4 \end{array}$	$\begin{array}{c} 3.4\\ 2.8\times10^3\end{array}$

Baseline SED Model Parameters of NGC 1275 Nucleus

X-ray probing of structure of material around supermassive black hole

