The Dynamics & Energetics of Radio-loud AGN

Vijay Mahatma, University of Hertfordshire

Martin Hardcastle Wendy Williams Judith Croston Judith Ineson

Radio-loud AGN

- Large scale radio jets
- Kinetic power large fraction of bolometric luminosity (>10⁸ L_{sun})
- Strongly polarised synchrotron radiation

University of Hertfordshire

- Elliptical hosts
- FRI---core-brightened
- FRII---edge-brightened

Key Questions

- Environmental Impact
 - Feedback/regulating galaxy growth
 - Shock heating in the intracluster medium
- Duty Cycle
- Fundamental dichotomy
 - Physical parameters governing jet power
 - Why do some RG's form FRIs and some FRIIs?
 - Is there an evolutionary track (FRI \rightarrow FRII)?
 - High/Low Excitation Radio Galaxies
- Dynamical Evolution
 - Spherical vs elongated lobes
 - Parsec-scale evolution
- Cosmological Impact
 - Why are more powerful sources found at higher redshift?
- Jet power (ETOTAL/TAGE)

University*of* Hertfordshire

Spectral vs Dynamical age

- Synchrotron cooling in the lobes of radio galaxies has a steepening effect on the radio spectrum (Spectral ageing).
- Age of electron population in lobes is a function of `break' frequency and lobe magnetic field
- Dynamical ages given by a model of the lobe advance speed and an estimate of source size.
- Spectral ages always underestimated...
 - Lack of broad-bandwidth radio data?
 - Wrong magnetic field estimates?
 - Substantial mixing of electron population?

University of

• Dynamical ages are wrong...

Source	z	Cluster kT (keV)	$L_{178} (W/Hz/sr)$	LAS (arcsec)	Size (kpc)
3C444	0.153	3.5	1×10^{26}	120	320
3C320	0.342	3.3	3×10^{26}	20	100

Croston et al. (2011)

T_{dyn}~25 Myrs

Chandra 0.5-5 keV JVLA 1.4 GHz

100 kpc

T_{dyn}~25 Myrs

E-MERLIN 1.4 GHz

Croston et al. (2011)

Analytic modelling

- Semi-analytic model of Hardcastle (2018)
- Describes the dynamics of the 'shocked shell' around radio galaxy based on environment and jet power
- Assumptions based on insights of numerical simulations (Hardcastle & Krause 2013; English et al. 2016)
- Describes radio lobe luminosity evolution and lobe dynamics

Lobe properties vs dynamical age

Results

- 3C320
 - Observational spectral age: 25 Myr (B – dependent!)
 - Observational jet power: 1.2 x 10³⁸ W
- 3C444
 - Spectral age: 42 Myr (B • Model dynamical age? dependent!)
 - Observational jet power: 5 x 10³⁸ W

- Model dynamical age **33 Myr**
- Model jet power: **1.4 x** • 10³⁸ W

- Model jet power?

Results and Conclusions

- Agreement between spectral and dynamical ages for 3C320, not for 3C444 (yet)
- Broad-bandwidth radio data are a <u>requirement</u> for spectral ages
- Instantaneous dynamical ages are unreliable shock speed changes with time
- Radio lobes are not in equipartition between B-field and electron energies.
- Lobe plasma of cluster-centre FR-II radio galaxies do not require a significant population of protons for dynamical evolution – (Croston et al. 2018)

Universityo

• Apply to larger samples of radio-loud AGN

Key Questions

- Environmental Impact
 - Feedback/regulating galaxy growth
 - Shock heating in the intracluster medium

• Duty Cycle

- Fundamental dichotomy
 - Physical parameters governing jet power
 - Why do some RG's form FRIs and some FRIIs?
 - Is there an evolutionary track (FRI \rightarrow FRII)?
 - High/Low Excitation Radio Galaxies
- Dynamical Evolution
 - Spherical vs elongated lobes
 - Parsec-scale evolution
- Cosmological Impact
 - Why are more powerful sources found at higher redshift?
- Jet power (ETOTAL/TAGE)

Spectral age/Dynamical age discrepancy

Candidate remnant radio galaxies (LOFAR H-ATLAS – Hardcastle et al. 2016)

Mahatma et al. (2018)

Candidate remnant radio galaxies (LOFAR H-ATLAS)

- Systematic sample of candidate remnants
- Remnant fraction: 10%
- Rapid fading of remnant plasma before jets switch on
- Restarting jets?

University of Hertfordshire

Mahatma et al. (2018)

LOFAR Two-Meter Sky Survey (LoTTS) DR1

Shimwell et al. (in prep), Williams et al. (in prep), Duncan et al. (in prep)

LOFAR Two-Meter Sky Survey (LoTTS) DR1 Shimwell et al. (in prep), Williams et al. (in prep), Duncan et al. (in prep)

LOFAR Two-Meter Sky Survey (LoTTS) DR1

LoTSS DR1 – Shimwell et al. (in prep), Williams et al. (in prep), Duncan et al. (in prep)

Pan-STARRS + LOFAR 150 MHz (yellow) + FIRST 1.4 GHz (green)

Pan-STARRS + LOFAR 150 MHz (yellow) + FIRST 1.4 GHz (green)

Pan-STARRS + LOFAR 150 MHz (yellow) + FIRST 1.4 GHz (green)

Host galaxy properties compared to normal RLAGN

Host galaxy properties compared to normal RLAGN

Results and Conclusions

- Now have a robust, systematic sample of candidate remnant radio-loud AGN (around 11 sources)
- Remnant fraction of 10% implies very rapid fading of synchrotron plasma
- Spectral index of switched off sources varies substantially
- Samples of restarting radio galaxies are now starting to be made with LOFAR (LOFAR Two-Metre Sky Survey – Shimwell (2017, and in prep)
- Global star-formation may not change significantly between AGN episodes.
- Radio-AGN episodes work independently to changes in the host galaxy.

University of Hertfordshire

• Some evidence of dustier host galaxies than normal radio galaxies

