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JOURNEY TO THE CENTRE OF THE
PERSEUS CLUSTER



Perseus cluster, Abell 426 (z = 0.018, M200 ~6.6x10“ M, ., ro5~ 1.8 Mpc)
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XMM-Newton EPIC-MOS mosaic X Asymmetries likely caused by sloshing of
. gas in potential well due to perturbation,

see e.g. Churazov+00, Simionescu+12

- . : Edges known as “Cold fronts”
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Chandra ACIS mosaic

15 arcmin (340 kpc)

500ks to 1.4Ms of
Chandra exposure

See Fabian+00,
Schmidt+02, Fabian+03,
Fabian+06, Sanders+07,

Fabian+11




Chandra RGB core region
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Chandra RGB core region
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Central cavities

o Outer “ghost”
i cavities




Evidence for feedback in Perseus

Image: X-rays (ROSAT HRI)
Contours: radio (330 MHz)

1 arcmin

Bohringer+93

e ROSAT first saw the
interaction of AGN jets
and bubbles with the
intracluster medium

e X-ray emitting gas
displaced by non-
thermal plasma

e Not until the launch of
Chandra that they
were seen to be
widespread



Heating power vs cooling luminosity

from J. Hlavacek-Larrondo (in Fabian 2012)
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Cavity bubble heating
power vs cluster

cooling luminosity
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Heating power estimated
from bubble enthalpy
(4PV) and timescale for
heating, Churazov+02

Energetically, AGN can
prevent cooling in majority
of objects over a wide
range in X-ray luminosity

>80% clusters with cooling
times <0.5 Gyr have
cavities (Panagoulia+14)

How does AGN feedback
work in detail?

How is the energy
distributed from cavities?
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Perseus Cluster
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Perseus Cluster: applying gradient filter (Sanders+16)
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Perseus Cluster: applying gradient filter (Sanders+16)

“Fountain” Cold front

’ ?
host” cavities

owever associated
with Iow frequency
radlo)
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“Bay”: KH instability or cavity? 22 kpc



Weak shocks in Perseus
Fabian+06, Graham+08, Sanders+16
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N

Weak shock
(M=1.21 from surface
brightness)

330 MHz radio (blue)



Weak shocks in Perseus
Fabian+06, Graham+08, Sanders+16

Graham+08: excess energy in
shocks is around 3.5 times
energy to heat adiabatically
(PV), assuming thermal
pressure. Close to 4PV value

1 arcmin
(22 kpc)

for y=4/3 gas.

However, we cannot detect a
temperature jump (3+6% vs
31% for density) — mixing or
plasma physics responsible?

N

Weak shock
(M=1.21 from surface
brightness)

330 MHz radio (blue)



Centaurus cluster (Abell 3526)

Chandra image of nuclear region (Sanders+16b)

Plume
(likely dragged
out by old cavity

S.hoék around cavities
"(M=1.1 to 1.4)

Nucleus -

Central cavities

30 arcsec (age ~6-22 Myr)
6.4 kpc



Edge-filtered Chandra image
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Sound waves?
Fabian+03,06
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Edge-filtered Chandra image

Sound waves?
Fabian+03,06
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If dissipated, can
provide distributed =
gentle energy source
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Waves carry
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cooling luminosity.
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Waves seen in simulations with viscosity

Density

Ruszkowski+04

Dissipation

time
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Unsharp-masked X-ray filtered images for two different viscosities



- Zhuravleva+14. t
Turbulence driven by feedback could do
the distributed heating
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Heating vs
cooling in
regions
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Perseus cluster
Virgo cluster
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Radiative cooling rate (erg ecm=3 s-1)

Surface brightness fluctuations,
sensitive to density, are used to
infer the turbulent velocity,

Chandra image of Virgo cluster § based on simulations
(Zhurlivieva et al;2014)..




Can turbulence combat cooling in Perseus?

Fabian+16:

Energy in turbulence accounts for
only 80 Myr worth of core X-ray
emission

g-modes (which drive turbulence)
only able to travel at <70 km s, and
could only travel 13 kpc in that time

Sound waves are able to travel much
further, covering cooling region at
1000 km s

Velocity amplitude of sound waves
consistent with Hitomi

S (counts s keV-1)
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Line of sight velocity dispersion: 164 + 10 km s

Hitomi collaboration (2016)
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Future X-ARM and Athena observations
will be vital.

Deep Chandra observations could measure
temperature variations of sound waves



The Future: Athena (early 2030s)

See Croston, Sanders, et al., 2013, Athena+ supporting paper
70 ks simulated observation with X-IFU
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5 arcsec spatial resolution, 1.4 m? collecting area @ 1 keV Velocities measured
Concept: X-IFU (2.5eV spectral resolution, 5 arcmin FoV) to 10s km s in each
WFI (standard spectral resolution, 40 arcmin FoV) 5 arcsec bin



T Ho filaments apparently dragged

14 kpc - out behind rising cavities

v \ \ i .'\ Velocity dispersion in filaments
\ \

ot | ° - 50-150 km/s (Hatch+06)

' y . X-ray [blue]
Perseus: X-rays and Ha Ha [red] Conselice+01



1" =225 kpc
- >

Gendron-
Marsolais+18

apparently dragged
ehind rising cavities

persion in filaments
50 km/s (Hatch+06)

X-ray [blue]
[red] Conselice+01



Multiphase filament structure
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10° Mg of X-ray gas associated with the filaments
However, the molecular gas mass dominates (up to 10! Mg; Salomé+08)



Further depressions to the north

Ratio to X-ray surface
brightness model.

Depressions to the north
at 220 kpc radius.

Minihalo extends along
direction (Sijbring+93)

If cavities, suggests that
they can survive for very
long time periods.

Outburst energies ~10
times larger than inner
cavities.

Accumulation of several
cavities? Instabilities?




Cold fronts

Chandra temperature map

“The bay”




Possible Kelvin-Helmholtz instability?

Perseus JVLA 230-470MHz

Walker+17

Negatively curved edge to the south, near the outer cold front edge,
named “the bay”

Low frequency radio avoids feature (Gendron-Marsolais+17), suggesting
it’s not a cavity




Perseus, Chandra

Outer cold front
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X-ray emissivity, simulation, beta=200

ZuHone+16
simulation

Outer cold front

Perseus, Chandra, GGM

Quter cold front

Projected kT, simulation, beta=200
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Perseus metallicity map

Sanders+07

High metallicity
regions are able to
survive in the
intracluster
medium (see also
Rebusco+05)

Likely rising
cavities can drag
these out (see e.g.
Kirkpatrick+15)

Intrinsically these
should be
stronger due to
projection




Perseus metallicity map

3x10* Mg, of
excess Fein 5
kpc blob

4x10% Type la
supernovae

Sanders+07

High metallicity
regions are able to
survive in the
intracluster
medium (see also
Rebusco+05)

Likely rising
cavities can drag
these out (see e.g.
Kirkpatrick+15)

Intrinsically these
should be
stronger due to
projection



Conclusions

e Deep X-ray observations of the X-ray brightest cluster
give us a wealth of information about cluster physics

e Several different processes could be important for
AGN feedback (bubbles, shocks, sound waves,
turbulence...)

e Studying images and spectra in detail can tell us
about the microphysics of the intracluster medium



