Exploring the radio and GeV-TeV γ-ray connection in the different blazar sub-classes

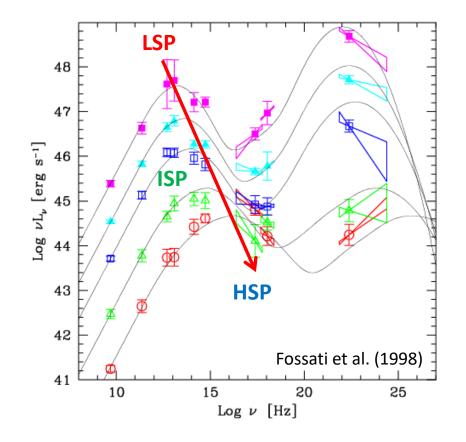
Presented by:

Rocco Lico,

M.Giroletti, M.Orienti, L. Costamante, V.Pavlidou, F.D'Ammando, F. Tavecchio, G.Giovannini, et al.

Perseus in Sicily: from black hole to cluster outskirts IAU Symposium 342 Noto (Sicily, Italy), 2018 May 13-18

Spectral energy distribution (SED)


Blazar SED: two non-thermal components from radio to γ rays:

LE component -> synchrotron emission from relativistic e⁻ in the jet.

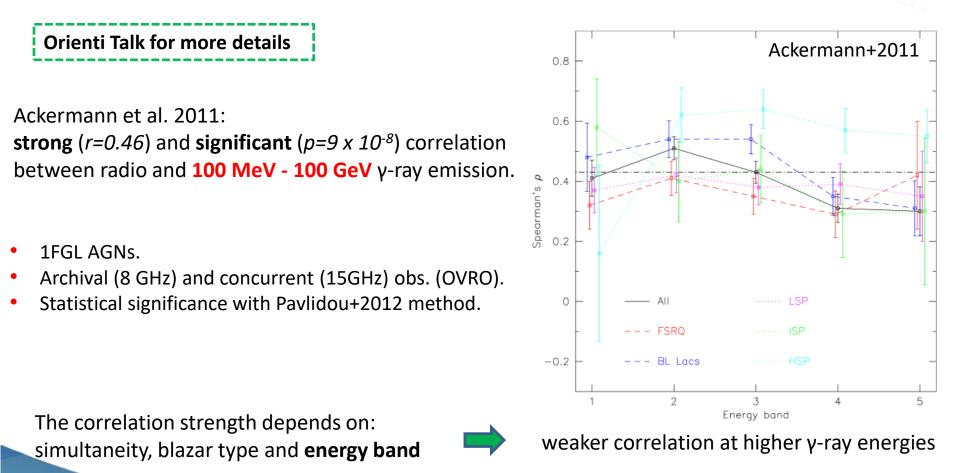
- HE component -> inverse Compton from relativistic e⁻ in the jet with surrounding LE photons:
 - same synchrotron photons (Synchrotron Self Compton model, SCC);
 - external photons (e.g. from accretion disk, BLR, dusty torus) (External Compton model, EC).

IAU Symposium 342

Blazar spectral sub-classes

- Low synchrotron peaked LSP
 v_{s,peak} < 10¹⁴ Hz.
- ✓ Intermediate synchrotron peaked **ISP** 10^{14} Hz < v_{s,peak} < 10^{15} Hz.
- ✓ High synchrotron peaked HSP $v_{s,peak} > 10^{15}$ Hz.

The peak frequencies of the LE and HE components correlate:


- When the radio/total power increases, both LE and HE peaks shift to lower frequencies.
- Luminosity ratio between HE and LE peaks (Compton dominance) increases with Lbol.

Radio and y-ray emission connection

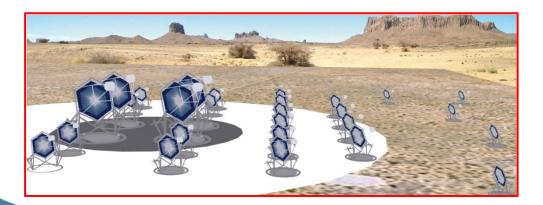
The *Fermi*-LAT revealed that blazars dominate the census of the γ-ray sky

Is there any correlation between radio and γ-ray emission?

• Emission models (e.g. SSC, EC), γ-ray emission region, EBL attenuation, Blazar sequence.

Rocco Lico, IRA/INAF & UniBo

IAU Symposium 342


Radio and VHE emission connection

Is there any correlation between radio and VHE $\gamma\text{-rays}?$

At present elusive due to the lack of a homogeneous coverage of the VHE sky

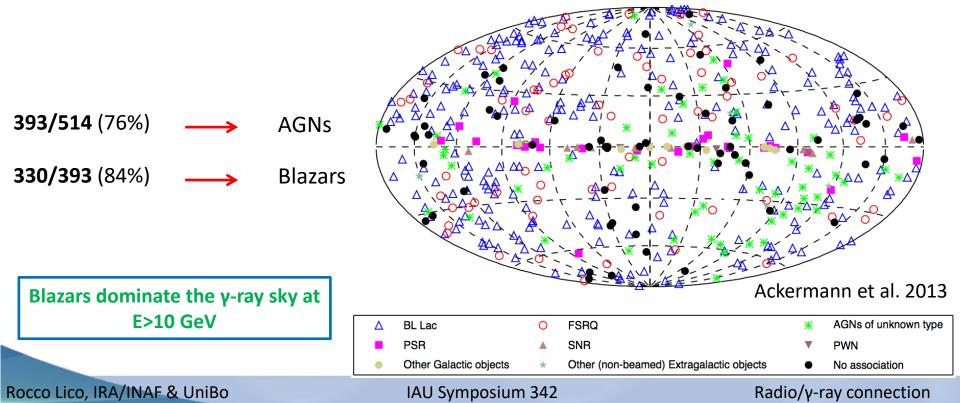
Imaging atmospheric Cherenkov telescopes:

- Pointing mode obs.
- Limited field of view.
- Limited observing time.
- Sources in a peculiar state.

VHE catalogs strongly biased

Rocco Lico, IRA/INAF & UniBo

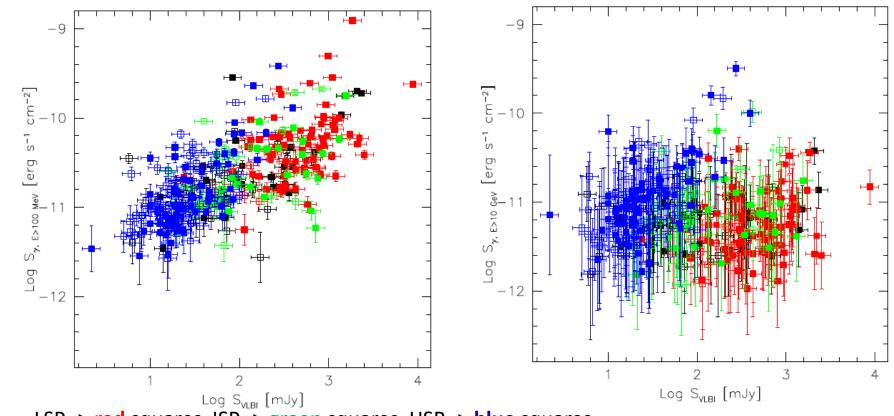
IAU Symposium 342


1FHL Fermi catalog

1FHL - First *Fermi*-LAT catalog of sources above 10 GeV (Aug 2008 - Aug 2011).

Why 1FHL?

Large, deep and unbiased sample in the energy range **10-500 GeV**.


- Connection between radio and VHE emission.
- Characterization of the most extreme γ-ray sources.

Correlation analysis: scatter plots

237 1FHL sources

3FGL (0.1-300 GeV)

LSP -> red squares, ISP -> green squares, HSP -> blue squares

Statistical significance -> method based on permutations of measured quantities (Pavlidou+2012):

- same lum. dynamical range and properties as the original sample;
- observational biases and distance effects.

Rocco Lico

IAU Symposium 342

Radio/γ-ray connection

1FHL (10-500 GeV)

Correlation analysis: results

Source	type	Catalog	Number of sources	Number of <i>z</i> -bins	r-Pearson	Significance
All sources		1FHL	147	14	-0.05	0.59
		3FGL	147	14	0.71	$< 10^{-6}$
BL Lac		1FHL	100	9	0.12	0.55
		3FGL	100	9	0.70	$< 10^{-6}$
FSRQ		1FHL	44	4	-0.01	0.99
		3FGL	44	4	0.49	$< 10^{-6}$
HSP		1FHL	60	5	0.57	1.0×10^{-6}
		3FGL	60	5	0.77	$< 10^{-6}$
ISP		1FHL	23	2	0.19	0.40
		3FGL	23	2	0.46	2.5×10^{-2}
LSP		1FHL	52	5	0.21	0.12
		3FGL	52	5	0.43	3.0×10^{-6}

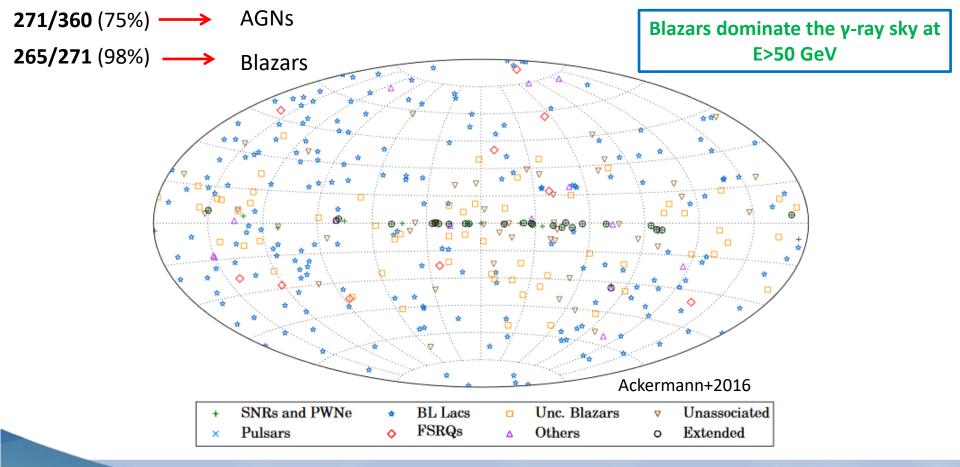
Radio VLBI vs. hard γ-ray emission (1FHL):

No evidence for a correlation (full sample, FSRQs, BL Lacs, LSP, ISP).

Strong and significant correlation for HSP objects.

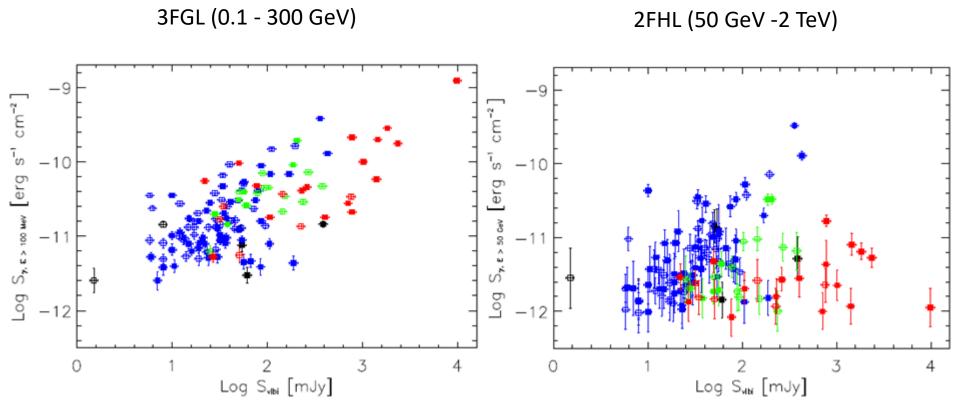
Radio VLBI vs. soft γ-ray emission (3FGL):

Strong and significant correlation for all sub-classes.


Rocco Lico, IRA/INAF & UniBo

7th Fermi Symposium

2FHL Fermi catalog


2FHL - Second *Fermi*-LAT catalog of HE sources above 50 GeV (Aug 2008 - Apr 2015).

360 sources detected in the energy range **50 GeV - 2 TeV**.

Rocco Lico, IRA/INAF & UniBo

IAU Symposium 342

131 sources

LSP -> red squares, ISP -> green squares, HSP -> blue squares

Rocco Lico, IRA/INAF & UniBO

2FHL: scatter plots

IAU Symposium 342

2FHL Correlation analysis: results

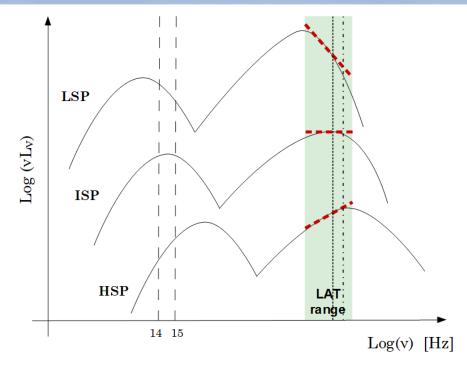
Source type	Catalog	Number of sources	Number of <i>z</i> -bins	r-Pearson	Significance
All sources	2FHL	76	7	0.13	0.36
	3FGL	76	7	0.72	$< 10^{-6}$
BL Lac	2FHL	63	6	0.23	0.34
	3FGL	63	6	0.73	$< 10^{-6}$
HSP - with z	2FHL	48	4	0.57	7.0×10^{-6}
	3FGL	48	4	0.58	$< 10^{-6}$
_	_				

Including HSP objects without know redshift

Radio VLBI vs. soft γ-ray emission (3FGL):

Strong and significant correlation for all sub-classes.

Radio VLBI vs. hard γ-ray emission (1FHL):


No evidence for a correlation (full sample and BL Lacs).

Strong and significant correlation for HSP objects (See also Piner & Edwards 2014).

Rocco Lico, IRA/INAF & UniBo

IAU Symposium 342

Correlation analysis: discussion

Powerful objects (i.e. FSRQs and BL Lacs of the LSP type):

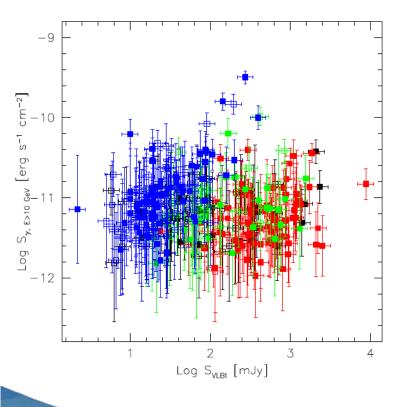
- soft γ-ray spectra -> HE component peaks at energies lower than those sampled by LAT;
- severe cooling losses of the emitting particles.

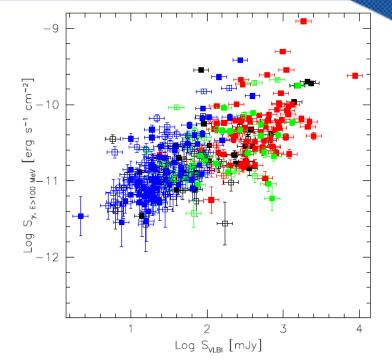
Weak objects (i.e. HSP objects):

- Energy losses less severe -> HE peak which is above ~100 GeV.
- The part of the HE spectrum affected by cooling effects is beyond the LAT energy range;
- rising spectrum both in the 3FGL and 1FHL/2FHL catalogs.

Rocco Lico, IRA/INAF & UniBo

IAU Symposium 342


Radio/γ-ray connection


Lico et al. 2017

Summary

Radio VLBI vs. soft y-ray emission (3FGL):

 Strong and significant correlation r = 0.7, p < 10⁻⁶.

Radio VLBI vs. hard γ-ray emission (1FHL & 2FHL):

No evidence for a correlation

full sample: r=-0.05.

Strong correlation for HSP objects:
x = 0.6, n = 10⁻⁶

r = 0.6, p = 10⁻⁶.

Lico et al. 2017 A&A 606, A138

Thank you!

Rocco Lico, IRA/INAF & UniBo

IAU Symposium 342