Particle acceleration in Galaxy Clusters

Gianfranco Brunetti

Institute of Radioastronomy –INAF, Bologna, ITALY

Outline

Introduction : Galaxy Clusters
Introduction : Non thermal emission
Physics of non thermal components
Models of particle acceleration

Mergings are the most energetic events in the Universe ≈ few 10⁶³ergs in a crossing time

1E 0657-56

Markevitch et al.

Chandra 0.5 Msec image

z=0.3

0.5 Mpc

Radio Halos

A2163, Govoni +al.2004

V(Hz)~ 4.2 B, 82

GeV electrons on Mpc scales

μG magnetic fields on Mpc scales

Cosmic Rays in GC

Cosmological Shocks

(e.g. Sarazin 1999, *Miniati et al. 2001, Blasi 2001,* Gabici & Blasi 2003, Ryu et al. 2003, Pfrommer et al. 2006, 2008, Vazza, Brunetti, Gheller 2008)

AGN, Galactic Winds (e.g. Ensslin et al. 1998; Voelk & Atoyan 1999)

Merger-Energy Budget

63-64 ⇒10⁹yrs rg/5 Cross

Fig. 4.—Three-dimensional shock surfaces in a volume of $(25 h^{-1} \text{ Mpc})^3$ around the same complex as in Fig. 3. The color bar shows the values of Mach numbers of shock surfaces,

Th

Acceleration of CR at shocks

Acceleration of CR at shocks

Acceleration of CR at shocks

First order Fermi Mechanisms (Fermi 1949)

 Frequency of collisions:
 $V_+ = 4 + C$

 L λ

 Energy gain per collisions:
 $P_+ = 2P + C$

 Energy gain per second:
 $\langle \triangle P_+ \rangle \approx 2P + C$

Acceleration of CRp at shocks

(Kang & Jones 2002; Malkov 1997, Kang & Jones 2005, 07, Amato & Blasi 2006)

$$\delta = 2\frac{\mathcal{M}^2 + 1}{\mathcal{M}^2 - 1}.$$

 $N(p) \propto p^{-d}$

Linear Theory (e.g.,Blandford & Eichler 1987)

Simulations : Shocks in Galaxy Clusters

Shocks in Galaxy Clusters

Physics of CR Leptons

Sarazin 1999 ; Brunetti 2003 for reviews

$(dE/dt) / m_{e}c^{2} = b = rate of energy losses in units of m_{e}c^{2}$

$$b_{\rm IC}(\gamma) = \frac{4}{3} \frac{\sigma_{\rm T}}{m_e c} \gamma^2 U_{\rm CMB} = 1.37 \times 10^{-20} \gamma^2 (1+z)^4 \, {\rm s}^{-1} \, ,$$

Photon Collisions

$$b_{\rm syn}(\gamma) = \frac{4}{3} \frac{\sigma_{\rm T}}{m_e c} \gamma^2 U_B = 1.30 \times 10^{-21} \gamma^2 \left(\frac{B}{1 \ \mu \rm G}\right)^2 \, \rm s^{-1} \; ,$$

Particle Collisions

$$b_{\text{Coul}}(\gamma) \approx 1.2 \times 10^{-12} n_e \left[1.0 + \frac{\ln (\gamma/n_e)}{75} \right] \text{s}^{-1}$$
,

$$p_{\text{brem}}(\gamma) \approx 1.51 \times 10^{-16} n_e \gamma [\ln (\gamma) + 0.36] \text{ s}^{-1}$$
,

Physics of CR Leptons

 $(dE/dt) \sim E / <u>Time</u> \sim m_e c^2 b$

$$\begin{aligned} \tau_{\rm e}({\rm Gyr}) &\sim 4 \times \left\{ \frac{1}{3} \left(\frac{\gamma}{300} \right) \left[\left(\frac{B_{\mu G}}{3.2} \right)^2 \frac{\sin^2 \theta}{2/3} + (1+z)^4 \right] \\ &+ \left(\frac{n_{\rm th}}{10^{-3}} \right) \left(\frac{\gamma}{300} \right)^{-1} \left[1.2 + \frac{1}{75} \ln \left(\frac{\gamma/300}{n_{\rm th}/10^{-3}} \right) \right] \right\}^{-1}. \end{aligned}$$

The life-time of electrons depends on quantities that are well measured

I - Cosmic Ray Confinment in GC

CR protons are *long living* particles and are *confined* (Voelk et al 1996; Berezinsky, Blasi, Ptuskin 1997)

CR electrons are <u>short living</u> particles and <u>accumulated</u> at $\gamma \approx 100-300$ (e.g., Sarazin 1999)

Blasi, Gabici, Brunetti 2007

Secondary Particles in the IGM

Dennison 1980; Blasi & Colafrancesco 1999; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005; Wolfe & Melia 2007; Brunetti 2008

Limits from gamma rays

Reimer +al. 2003; Pfrommer & Ensslin 2004

H.E.S.S. A 85 : Ecr/Eth < 6-15% (<u>hard spectra</u>) Coma : Ecr/Eth < 12%

VERITAS (Perkins +al. 2008) Coma : Ecr/Eth < 5% (hard spectra)

Limits for CR protons

Brunetti, Blasi, Cassano, Gabici 2008

Limits from radio observations are obtained from the constraints to secondary electrons in galaxy clusters Without Radio Halos

Reimer +al. 2003; Pfrommer & Ensslin 2004

H.E.S.S. A 85 : Ecr/Eth < 6-15% (<u>hard spectra</u>) Coma : Ecr/Eth < 12%

VERITAS (Perkins +al. 2008) Coma : Ecr/Eth < 5% (hard spectra)

II - Conclusion

 (a) Protons are expected the dominant CR population in the IGM : they result from the accumulation of CR from the epoch of formation of galaxy clusters

(b) Despite (a) we have only upper limits to the energy content in the form of CR protons

Origin of Radio Halos

 $R \approx 2\sqrt{TD}$

$$\frac{\partial n_p(E_p, r, t)}{\partial t} - D(E)\nabla^2 n_p(E_p, r, t)$$

$$D(E_p) = \frac{1}{3} r_L c \frac{B^2}{\int_{1/r_L}^{\infty} dk P(k)}$$

Radio Halos

The diffusion time of the emitting electrons necessary to cover Mpc distances is 100 times larger than their radiative life-time

 $\widetilde{\mathcal{L}} = \widetilde{\mathcal{L}}_{\mathsf{F}}$ Z~2VTD

Brunetti 2003

III – Conclusion : no diffusion !

GeV electrons on Mpc scales

ωμG magnetic fields on Mpc scales

$$T_{diff} (\sim 10^{10} \text{ yr}) >> T_{cool} (\sim 10^8 \text{ yr})$$

(Jaffe 1977)

Looking at new physical processes Labs to study GC as particle accelerators

Origin of the emitting electrons

First possibility: *secondary models*, relativistic electrons continuously injected in the ICM by inelastic proton-proton collisions

through productions and decay of charged pions (e.g., Dennison 1980, Blasi & Colafrancesco 1999, Dolag & Ensslin 2000; Pfrommer & Ensslin 2004,08)

Since protons accumulate in galaxy clusters and clusters are magnetised at muG level, we expect that the synchrotron emission from secondary electrons in the IGM should be common.

- Which is the level of this emission?
- Are Radio Halos due to secondary emission?

The complex statistics of Radio Halos

NVSS data (from *Giovannini et al.* 1999) and deep **GMRT observations**.

0.41\pm0.11 for L_x>10^{44.9} erg/s

 0.08 ± 0.04 for L_x<10^{44.9} erg/s

(Venturi et al. 2007, 2008; Cassano et al.2008)

Evidence for "on-off" phenomena ?? (Brunetti et al. 2007)

Connection with cluster mergers (e.g. Schuecher et al. 2001, Markevitch et al. 2002, Boschin et al. 2003 Govoni et al. 2004)

Origin of the emitting electrons

First possibility: *secondary models*, relativistic electrons continuously injected in the ICM by inelastic proton-proton collisions through productions and decay of charged pions (e.g., Dennison 1980, Blasi & Colafrancesco 1999, Dolag & Ensslin 2000; Pfrommer & Ensslin 2004)

Second possibility : *in situ* re-acceleration by MHD turbulence developed in the cluster volume during the merger events (e.g., Brunetti et al. 2001, 2004; Petrosian 2001; Ohno et al. 2002; Fujita et al. 2003; Brunetti & Blasi 2005; Cassano & Brunetti 2005; Brunetti & Lazarian 2007; Petrosian & Bykov 2008)

Turbulence in galaxy clusters

Schuecker +al. (2004)

Bryan & Norman 1998; Ricker & Sarazin 2001; Sunyaev et al.2003; Cassano & Brunetti 2005 Dolag et al. 2005; Vazza et al. 2006; Nagai et al. 2007; Brunetti & Lazarian 2007; Iapichino & Niemeyer 2008

Second order Fermi Mechanisms (Fermi 1949) Frequency of collisions: $V_+ = 4 + 4$

Energy gain per collisions:

≈±2 p <u>M</u> $\Delta P \approx 2 P \frac{1}{2} \frac{1}{2}$

Observations: Spectral Cut-Off

Evidence of break in the synchrotron spectrum

Observations: Spectral Cut-Off

Evidence of break in the spectrum of the emitting electrons at energies of few GeV

Acceleration mechanism not efficient !

Evidence for steep spectra : turbulent acceleration

The general picture

clusters increase their mass via merger with smaller subclusters

IURBULENCE reaccelerates fossil e secondaries e⁺ on Mpc scales

clusters increase their mass via merger with smaller subclusters

The general picture

SHOCKS accelerate e[±], p_{cr}

റ

TURBULENCE reaccelerates fossil e[±] and secondaries e[±] on Mpc scales

General multiwavelength expectations

Brunetti, 2008

General multiwavelength expectations

Brunetti, 2008

Cherenkov

The FUTURE

Fermi

Why low frequency ?

Ensslin & Roettgering 2002

Regardless of the origin of Radio Halos, extrapolations of their number counts at 1.4 GHz based on the Radio-X ray correlation observed for Radio Halos suggest that a large fraction of these Halos is at faint fluxes.

Due to their steep synchrotron spectrum, faint Radio Halos should appear more luminous at low frequencies and thus LOFAR and LWA are expected to discover a large number of these objects.

/dlog₁₀S_{1,4}GHz

Radio halos at lower radio frequencies

Radio Power

Fraction of galaxy clusters with radio halos at low v

Cassano et al. 2008

 \clubsuit The expected fraction of clusters with radio halos increases at low **v**

* This increase is even stronger for smaller clusters (M<10¹⁵ M_{\odot})

Main Conclusions

- Connection between non thermal emission and cluster mergers
 - Shocks and turbulence accelerate particles in the IGM
 - Protons are accumulated in the IGM and inject secondary particles
 - Electrons are short living particles : re-acceleration / injection
 - The non thermal spectrum is complex and extends from radio to gamma Radio : Radio Halos = turbulence? Radio relics = shocks ?
 - Future : Low radio frequency & high energies LOFAR will detect hopefully 1000 Radio Halos testing present models