AGN research in Bologna

Marcello Giroletti INAF Istituto di Radioastronomia giroletti@ira.inaf.it

Outline

- Active Galactic Nuclei
 - Galaxy-> Nucleus -> AGN
 - Radio Loud/Radio Quiet dichotomy
- Radio Loud Zoo
 - Kiloparsec scale properties
 - Parsec scale properties, VLBI
 - Unified models

Galaxies and nuclei

- Most galaxies reveal some level of nuclear activity in their central regions. How do we know that?
 - Optical spectroscopy shows broad emission lines
 - X-ray observations from satellites reveal nonthermal continua
 - Radio interferometers image jets emerging from galaxy central regions
 - UV, IR, gamma-ray observations provide further evidence

Basic AGN picture

- Disk: optical, UV, X
- NRL, BLR: optical
- Jet: radio to gamma-ray
- Torus: IR
- BH: gravitational waves
- But not all AGNs are equal...

Radio quiet/radio loud dichotomy

- Radio luminosity vs optical magnitude plot reveals a dichotomy
- $R=f_R/f_O$
- R>10, radio loud
- R<10, radio quiet
 - (Kellermann et al. 1989 and many other)
- Radio loud are about 1-10% of all AGN, but their luminosity makes them important

Origin of the radio emission

- $N(E) = N_0 E^{-\delta}$
- Electrons emit at a frequency $v=4.2 \ 10^{-6} \gamma^2 H$
- Electrons with γ =1000 –> emission at radio wavelengths
- $dE/dt = -bH^2E^2$, $Q(t)=NE^{-\delta}$
- $S(\nu) =$
 - $v^{-\alpha}$ if $v < v^*$
 - $v^{-(\alpha+0.5)}$ if $v > v^*$
- v*=10⁹ x t⁻² x H⁻³ (GHz, yr, mG)
 - multifrequency observations constrain v^* , and allow us to derive t_{spec}

How do we study radio emission?

Today

- Single dish at cm to mm wavelengths
 - Medicina, Noto,
 Effelsberg, Pico
 Veleta, ...
- Linked interferometers

 VLA, WSRT, PdBI, ...
- Very Long Baseline Interferometry
 - EVN, VLBA, LBA, ...

In the future

- Upgrade of current instruments
 - E-VLA, e-MERLIN, eVLBI
- New facilities from single dish to space VLBI
 - Sardinia Radio
 Telescope
 - LOFAR, ALMA
 - VSOP2, Radioastron
- And eventually the SKA...

3c296,

24.08

The radio loud zoo

3c223,

25.67

3c353, 26.63

Cyg A, 27.65

Images courtesy of NRAO/AUI, Atlas of DRAGN, and Dreamworks [®]

Radio galaxies

- Morphology:
 - Core: flat spectrum, unresolved
 - Jets: up to several 100's kpc, steeper spectrum, may contain "knots"
 - Lobes: big amorphous structure, contain "old" particles
 - Hot spots: present in more powerful sources, bright and compact, site of reacceleration

Radio galaxies cont'd

- Typical linear size is some 100's kpc: well beyond host galaxy
 - Giant radio galaxies up to >1 Mpc
 - Compact sources as small as <1 kpc but with same morphology/power
- Host galaxies are typically bright ellipticals
- Radio power is in the range 10²²-10²⁷ W Hz⁻¹, with a significant threshold at 10^{24.5} W Hz⁻¹
 - L<10^{24.5} W Hz⁻¹: edge dimmed, disrupted jets, no hot spots (FR1)
 - L>10^{24.5} W Hz⁻¹: edge brightened, collimated jets, presence of hot spots (FR2)

Beyond radio galaxies: blazars

- Not all extragalactic radio sources are radio galaxies powerful radio sources can also:
 - Be associated to QSOs, BL Lacs = **blazars**
 - (strong non thermal sources, with or without emission lines)
 - Have flat spectral index, rather than typical steep spectrum
 - Be dominated by compact components, lacking extended lobes
 - Display large variability in short timescales and high energy emission

What's in the engine of RGs?

- RG cores are typically unresolved on arcsecond scale: we need VLBI!
- Bologna Complete Sample:
 - A sample of 95 radio galaxies with VLBI images, suitable for statistical studies (Giovannini et al. 2005)
 - Contains both FR1 and FR2 source (low and high power)
 - No remarkable differences are found on parsec scales!

3C 66B

Properties of VLBI cores

- VLBI observations of cores in radio galaxies and blazars find:
 - More compact components: brightness temperatures beyond inverse Compton catastrophe limit
 - Jets are more frequently one sided than two-sided
 - Jet components move faster than speed of light!!!

Relativistic effects

- Photons emitted by a fast moving component in a trajectory close to the line of sight "catch up" with ones emitted earlier
 - Radiation beamed towards us gets a boost
 - Radiation emitted in all other directions gets dimmer
 - Beware of the "Doppler factor":

$$\delta = \frac{1}{\gamma(1 - \beta \cos \theta)}$$

Doppler factor

$$\delta = \frac{1}{\gamma(1 - \beta \cos \theta)}$$
$$B = \delta^{2+\alpha} B'$$
$$\beta_{app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$$
$$R_{jet/cjet} = \left(\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}\right)^{2+\alpha}$$

- Main effects of Doppler beaming:
 - Large jet/counterjet ratio, one-sided jets
 - Superluminal motions
 - Larger number of sources viewed on-axis
 - Short-term variability
 - High-energy Inverse
 Compton radiation

Unified models

- Doppler beaming can reconcile most differences between various radio beasts!
- If we are interested in how jets are formed – and we are! – we have to look to blazar (small viewing angle, large Doppler beaming)

courtesy of A. Marscher

Markarian 501

- A radio source associated to a BL Lacs like object at z=0.034
 - detected across all the electromagnetic spectrum
 - A bright radio source (S_{5 GHz} = 1 Jy)
 - Flat spectrum, compact, core dominated
 - two sided in VLA images, a nice one sided, twisting parsec scale jet

High Sensitivity Array observations

- The High Sensitivity Array:
 - VLBA (10x25m)
 - phased VLA (27x25m)
 - Arecibo (300m)
 - Green Bank (110m)
 - Effelsberg (100m)
 - 7x more sensitive than the VLBA alone!
- Final image parameters:
 - rms noise around 25 μ Jy beam⁻¹
 - Resolution around 10 mas (HPBW) at 1.6 GHz
 - polarization information available

High sensitivity images

HSA: jet structure

- Total intensity
 - one-sided jet confirms relativistic velocity out to 1" from the core
 - viewing angle θ =10°-15°, Lorentz factor Γ =10, δ ~2.6
 - slice at 100 mas from core is limb brightened
 - Remember different velocity = different Doppler = different brightness: two velocity regime?
- magnetic field structure
 - polarized intensity as high as 100 mJy/beam
 - organized magnetic field
 - B stratified in the inner jet, perpendicular to jet axis after the bend

Approaching the Black Hole

- Resolution is given by $\theta = \lambda/d$
 - Increase d: space baseline (VSOP)
 - Decrease λ : millimeter VLBI (GMVA)
- compact structures are resolved in higher resolution images
- limb brightening clearly revealed by VSOP on 10 mas scale
- GMVA probes 100's Schwarzschild radii scales (M_{BH}=10⁹ M_{sun})
 - Another jet direction change
 - Suggestion of intrinsic of limb brightening

Jets and their environment

- Tight relations between BH and host galaxy properties – feedback
 - Jets are intimately related to their environment
- We can use polarization, spectral lines to study jet environments

Polarization information

- From RM (change of polarization angle with square of observing wavelength) it is possible to derive properties of the intervening medium
- RM range in a sample of CSS sources from -20 rad m⁻² and 3900 rad m⁻²
 - Mantovani et al. (2009)

Spectral line observations

- Accretion of cool gas may power radio jets?
 - study of dynamics of cool gas through mm-interferometry
- Study of B2 sources with IRAM reveals evidence for a physical link between dust (HST) and molecular gas (CO).
 - Eg., CO line with double-horn profile indicating ordered rotation (Prandoni et al. 2007)
- Future Perspectives
 - ALMA will provide high-quality and high resolution imaging in the (sub)mm range
 - ALMA will resolve structure and dynamics of molecular gas around nearby AGN: direct information on accretion scenario

Summary

- AGN are exciting phenomena, useful for physics and cosmology
- Radio galaxies, blazars are particularly interesting owing to the emission across all the electromagnetic spectrum
- In the next years new radio facilities, as well as high energy missions (eg Fermi), will greatly enhance our current understandings.

