4th Estrela workshop - Bologna

JCMT observations of methanol in Cepheus A

Kalle Torstensson – Leiden & JIVE -back in Leiden

Huib Jan van Langevelde – JIVE & Leiden Floris van der Tak – SRON

estrela

Outline

- Why and How
 - High-mass star-formation
 - 6.7 GHz CH₃OH maser (5₁-6₀ A⁺)
- Results
 - Our data rotation diagrams
 - Combined with SCUBA
 - non-LTE models
- Conclusions

High-mass star-formation

• Theories unclear for stars $> 8M_{\odot}$

Nearby massive stars are rare and evolve on short time scales. Typically form deeply embedded in clusters.

- 6.7 GHz methanol masers
 - Only in MSF regions
 - High resolution ~mas
 - Kinematics

Where/When do we find masers?

- Maser modeling (Cragg et al '05)
 - T: 100-300 K
 - n: 10⁴-10⁹ cm⁻³
 - N_M/Δv: 10¹⁰-10¹⁴ cm⁻³

Image credit: Cormac Purcell

Methanol

- Very rich spectrum
- Almost linear good temperature probe
- Asymmetric good density probe
- CH₃OH
 enhancement
 ~few 10⁴ years

Sample & Observations

Sample

- 15 nearby high-mass star-forming regions
- We have wide field EVN observations
- Observations Cep A
 - Thermal methanol @ 338.4 GHz with JCMT
 - Multi-beam HARP, 16 receptors
 - Mapsize of 2' with a pixel spacing of 6"
 - Resolution 14", matching SCUBA

CH₃OH (7-6) 338.4GHz

338.4 GHz

Cep A – CH₃OH Results

- Two intensity peaks in the center and one in the outflow
- Large scale velocity gradient outflow
- Largest line width at position of HW2 (maser)

Cep A – Analysis

Rotation diagram analysis (Boltzmann plot)

- One excitation temperature
- Lines optically thin (τ«1)

Cep A – CH₃OH Results

30 < T_{rot} < 300 K

- $10^{12} < N(CH_{3}OH) < 10^{16} \text{ cm}^{-2}$
- 4 regions
 - T_{rot} peaks at position of HW2
 - N(CH₃OH) peaks to the SW
 - Outflow feature to the NE
 - Envelope

Rotation temperature

Hydrogen column density – N(H₂)

$$N(H_2) = \frac{S_v}{\kappa_d(\lambda) \Omega_{mb} B_v(T) 2 m_H} R$$

log N(H2), T=Trot

- Constant T => Scaled version of the SCUBA map
- T=T_{rot} => Regions with higher
 T yields lower N(H₂)

Methanol abundance – x(CH₃OH)

x(CH3OH)=N(CH3OH)/N(H2)

- Qualitatively agrees well
- T=T_{rot} => Max abundance one magnitude higher than T=const
- Position of x(CH3OH) ~ N(CH3OH)

Results I

- The 6.7 GHz methanol maser is more closely associated with the T_{rot} peak, rather than the column density or abundance peak.
- T_{rot} is not a kinetic temperature. It is a combination of the temperature T_{kin} and the density n.

What are the physical conditions of the gas?

We have used RADEX for our non-LTE analysis to create synthetic spectra for a grid of physical conditions

RADEX non-LTE analysis

Physical conditions

T_{low} & n_{low}

One last point... timescales

- Cep A @ 700 pc
- Outflow ~45" from HW2
- Shock velocity ~20km/s
- Dynamical age, $t_{dyn} \sim 10^4$ yrs
- t_{dyn} ~ t_{chem}
- Supports same origin

Conclusions

- The 6.7 GHz methanol maser is most closely associated with the T_{rot}(CH₃OH) peak.
- non-LTE analysis show T_{rot} to be more sensitive to density than temperature.
- Dynamical and chemical timescales support a common driving source for the region

- Continue with 14 more sources
- Next time (in GBG) Merlin

