Pointing calibration of 22 GHz multi-beam receiver

Rashmi Verma Istituto di Radioastronomia (INAF) Bologna

ESTRELA workshop - Bologna, 19/Jan/2k9

Outline of the talk

- > The 22 GHz mbeam receiver
- > Why pointing is important @ 22 GHz
- > Test measurements
- > Subreflector geometry
- Results

Mechanical Vs Otimized optical alignment Subreflector parameters vs elevation Antenna gain curve

- Summary
- Future plan

22 GHz multi-beam receiver

> 7 feed focal plane array in hexagon geometry working in 18 -26 GHz band

> high sensitivity continuum observations,

spectroscopy and polarimetry

22 GHz.. conti...

Characteristics

Table 1:	$22~\mathrm{GHz}$	multi-feed	receiver	characteristics
----------	-------------------	------------	----------	-----------------

Inner Diameter of the horns	68.8 mm		
Outer Diameter of the horns	98.0 mm		
Distance between two adjacent horns	100.0 mm		
Tsys (El= 45°)	75 K (Opacity = 0.1)		
Gain $(El = 45^{\circ})$	0.12 K/Jy (Simulated value for central beam)		
Gain (El= 45°)	0.11 K/Jy (Simulated value for lateral beams)		
HPBW	92" (each beam)		
Sky distance between two adjacent beams	215"		
Output channels	14 (7 LCP + 7 RCP with 2 GHz-wide IF bands)		

Why pointing is so important

A pointing offset and poor focus degrades the SNR of object

Test measurements

To determine pointing accuracy

- Performed cross scans across W3OH with mechanically determined optical alignment
- > W3OH is a maser & bright @ 22 GHz

Optics is not aligned properly

Questions arises :

- How to maximize the power in main beam
- How to reduce side lobes

Solution :

Align primary mirror, secondary mirror and feed properly

- Mfeed is mounted in the secondary focus
- Adjust subreflector to align optics
 Subreflector 5 degrees of freedom for movement
- > 2 degrees in translation (X & Y axes)
- > 3 degrees for Tilt & focus (parameters: z1;z2;z3)
- > z2 = z3, z1 = -2 z2

Subreflector geometry

Convenzione versi di movimente

Results

W3OH @ elv = 33 with mechanically determined optical alignment Tsys = 54K

results conti...

W3OH @ elv = 36 with optimized optical alignment Tsys = 81K

results conti...

W3OH @ elv = 67 with mechanically determined optical alignment Tsys = 88K

results conti...

W3OH @ elv = 66 with optimized optical alignment Tsys = 102K

Subreflector parameters

- User will be provided with subreflector parameter vs elevation for optimized optical alignment
- X = 15mm (constant)

z1 position

z3 position

Results conti...

Antenna gain measured on DR21 for central feed

Blue diamonds : raw data Pink squares: corrected for opacity

Summary

- 15 20 % increase in total power relative to mechanically determined optical alignment
- Reduced side lobes
- New sub reflector model
- Refined the existing pointing model
- Antenna gain @ elevation 45 = 0.1K/Jy for central beam (in agreement with the simulated value)

Future plan

- Some more observation to get sub reflector parameter polynomials
- Calibrate lateral feeds