

International Centre for Radio Astronomy Research

ICRAR is a partnership between Curtin University of Technology and The University of Western Australia

AAVs – Deployment Considerations

ICRAR team

Progress meeting, Oct 22-23 2012 Medicina, Italy

Agenda

Enclosures & Infrastructure

Layout logistics

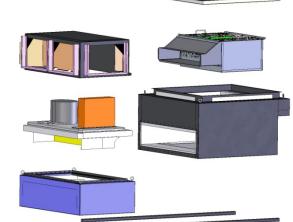
Planning & Preparation

Design for Deployment

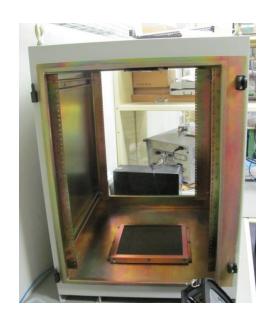
Enclosures

MWA "White Box"

- Available & ready to use
- RF shielding tested & accepted
- Limited size
 - 14u Crate size, but 280mm deep
 - ~1KW max internal power use (for thermal reasons)
 - 4pr Fiber + mains power available, DC mower module can be used with mods (takes up 2u)

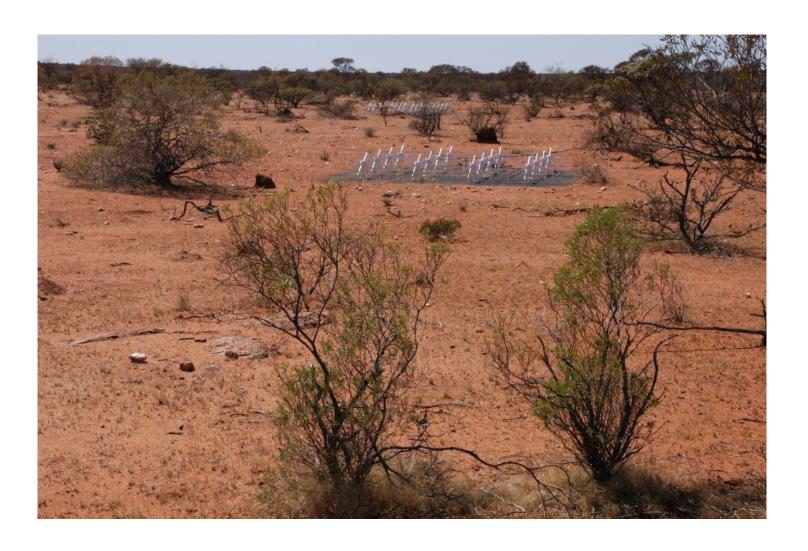

COTS Rack enclosure

- "half-rack" ~A\$ 4000 (15u x 750mm deep)
- Steel, decent shielding
- May not be weather-tight as delivered
- Penetrations & cooling design required (+\$\$)
- Larger/smaller sizes similarly priced



MWA Infrastructure

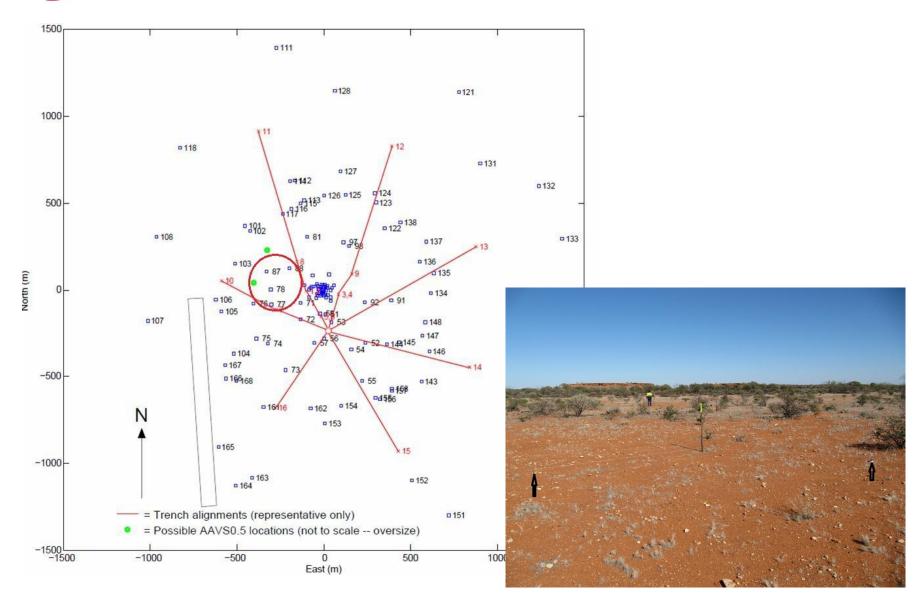

("Telstra hut")



http://www.facebook.com/Murchison.Widefield.Array

Typical terrain

MWA receivers on their pads



Core area tiles

Selected AAVs0.5 location

AAVS0.5 Deployment


- 16 dipole elements

- Phase 1 (~6m elapsed time)
 - Production
 - Shipping & haulage
 - Site Prep -
 - Survey
 - Drilling
 - Hole prep & posts
 - Element Assembly
- Phase 2 (2013)
 - Cabling
 - Rx & back-end installation
 - Monitor, control, data capture verification
 - -> Measurements

Site prep costs

- Drilling \$10K, 1 2 days
- Manpower 2.5 people, 2 4day+ trips
- Materials (tools, posts, safety gear, vehicle rental, accomodation...)
- Time
 - Survey 2-5min/location, + reference locations
 - Hole prep up to 1hr / hole
 - Antenna assy 1hr/antenna?
 -

Drilling

MWA Ground screens (new)

Mesh sheets are
3.15mm wire, a bit over
20kg per sheet, three
sheets per tile.
128T works out to about
9 tonnes of mesh

(The old screens were 4mm dia wire, "tie-wired" together)

Comparisons

LWA - ~256 antennas

- Locate/Survey ~300 pts over a ~100x100m area
- Located 256 elements + associated infrastructure
- "student army" ~2wks
- Professional recheck -1wk

MWA (128 Tiles)

- 128 Tiles over a 1.5km
 area (2 pts/tile) = 3days
- Rx + trench locs ½ day,
 2 times
- Other:
 - GPR survey ~ \$80K
 - \$ trenching

Scaling..

- Say we're 2x as good as LWA.
 - > 600pts / week, 5 teams (1-2 people)
 - = 3000 locs / week
- @ 100,000 elements, == 30 weeks
- = possibly 6.6 man-years, \$1.3million?
- And this is only the locations!

_

Some Conclusions:

- Logistics costs of antenna deployment could be very high for any individually-located element design
- Even repeated but internally random stations will require each element to be located
- Adding a ground plane could reduce the deployment costs dramatically:
 - No ground penetrations required
 - No sensitivity to underlying geology
 - Significant reduction in element location survey costs
 - Especially for regular element layouts
- Any realistic SKA design will have to be extremely modular and maximize early signal aggregation