The Radio - FIR correlation in the faintest star-forming galaxies

Sambit Roychowdhury

Max Planck Institute for Astrophysics

Collaborators: Jayaram Chengalur (NCRA-TIFR), Aritra Basu (MPIfR)

EWASS 2015, Special Session 9

24th June 2015

The Radio-FIR correlation

- 1.4 GHz Radio continuum is strongly correlated with Far InfraRed emission (FIR, TIR, S_{IR}) over many decades in L
- Star formation behind it all : FIR flux → energy of UV photons from young stars re-processed by dust Radio flux: thermal part → HII regions ionized by massive stars, non-thermal emission → Cosmic Ray electrons (CRe s) accelerated in SNRs of dying stars & interacting with the magnetic field
- Of late a consistent picture is emerging for explaining the correlation – where the energy in CRe s and magnetic field are 'equipartitioned' magnetic field couples with the gas density through MHD turbulence – and the gas density in turn determines the star formation rate

In Dwarf Galaxies

- The expectation for low luminosity galaxies
 - → more CR electrons escape decreasing radio emission
 - → decreasing dust / UV opacity causes lower FIR emission
 - → 'conspiracy' maintains correlation (Bell, 2003; Lacki et al., 2010)
- Difficult to verify for low luminosity galaxies because
 - \rightarrow radio emission too faint
 - \rightarrow stacking images to get detectable emission
- Padovani (2011) predicts that star-forming dwarfs will contribute significantly to the number counts at faint levels in the proposed next generation deep sub - µJy surveys
- Measuring the radio continuum flux also allows one to estimate the total magnetic field strengths → crucial to test whether low mass galaxies seeded the IGM with magnetic fields in early epochs

Faint Irregular Galaxy GMRT Survey

- For 62 galaxies HI 21 cm emission observed, largest such sample
- Selection criteria: $M_{\rm B} > -14.5$, HI Flux > 1 Jy km s⁻¹, $D_{\rm opt} > 1'$
- Sample properties (Begum et al., 2008):

• Fraction of gas in baryonic mass, <fgas> ~ 0.7

• Metallicity ~ 0.1 solar or lower

The quantity to be measured

• We use Appleton et al. (2004)'s method to check correlation

q is constant only when $b = 1 \rightarrow b$ value to be checked also ...

Samples

Sample/galaxy	Number of galaxies
NVSS	57
MIPS 70 µm	26
FUV	46
Common	24
UGC 5456	1

- Stacking of: NRAO VLA Sky Survey (radio 1.4 GHz) and Spitzer
 MIPS 70 µm → GALEX FUV data for estimating star formation rate
- 13 of the MIPS subsample galaxies have detectable emission in 70 µm band → only 1 NVSS subsample galaxy has detectable radio continuum emission

Samples

Sample/galaxy	Number of galaxies	M _B	D _{Ho} (arcmin)	$M_{\rm HI}$ (10 ⁷ M _☉)	D (Mpc)
NVSS	57	-13.1	1.7	2.8	4.8
MIPS 70 µm	26	-13.1	2.0	2.6	3.4
FUV	46	-13.1	1.7	2.6	4.5
Common	24	-13.1	2.0	2.2	3.4
UGC 5456	1	-15.1	1.9	5.9	5.6

- Stacking of: NRAO VLA Sky Survey (radio 1.4 GHz) and Spitzer
 MIPS 70 µm → GALEX FUV data for estimating star formation rate
- 13 of the MIPS subsample galaxies have detectable emission in 70 µm band → only 1 NVSS subsample galaxy has detectable radio continuum emission

Method

- NVSS has effective continuum bandwidth of 45 MHz, resolution of 45 arcseconds, and noise level of 0.45 mJy per beam
- Spitzer MIPS 70 micron band has a bandwidth of 19 micron and resolution of 19 arcseconds
- The Spitzer PBCD s (all galaxies less than 2 arcmins in extent) were convolved to a FWHM of 41 arcseconds using kernel from Aniano et al. (2011)
- For both sets images were co-added after being weighed by the inverse of the variance of the background flux
- For NVSS, on co-adding images for 57 galaxies the background rms reduced to 66 µJy per beam
- For Spitzer 70 micron images, on co-adding 51 PBCDs the background noise reduced from 0.2 MJy per steradian to 0.03 MJy per steradian

Stacked images

1.4 GHz

70 micron

Roychowdhury & Chengalur, 2012

Results of stacking – FIR flux

Sample/	SFR_{FUV}	$L_{70 \mu m}$	$L_{70 \mu m}^{\mathrm{high} Z}$
galaxy	(M _{\odot} yr ⁻¹)	(erg s ⁻¹)	(erg s ⁻¹)
NVSS MIPS 70 µm Common UGC 5456	3.8×10^{-3} 3.0×10^{-3} 3.0×10^{-3} 1.9×10^{-2}	1.3×10^{39} 1.4×10^{39} 2.4×10^{40}	1.2×10^{40} 1.2×10^{40} 6.0×10^{40}

 Calzetti et al. (2010) obtained a relation between surface densities of SFR and 70 micron luminosity for brighter and higher metallicity galaxies

• Faint dwarfs have lower emission compared to that predicted by this relation

Results of stacking – radio flux

Sample/ galaxy	$\frac{\text{SFR}_{\text{FUV}}}{(\text{M}_{\bigodot} \text{ yr}^{-1})}$	$L_{1.4\mathrm{GHz}}$ (WHz^{-1})	$L_{1.4 \mathrm{GHz}}^{>L_*}$ $(\mathrm{W Hz}^{-1})$	$L_{1.4 \text{GHz}}^{< L_{*}}$ (W Hz ⁻¹)
NVSS MIPS 70 μm	3.8×10^{-3} 3.0×10^{-3}	2.5×10^{18}	6.9×10^{18}	1.2×10^{18}
Common UGC 5456	3.0×10^{-3} 1.9×10^{-2}	1.2×10^{18} 1.1×10^{19}	5.4×10^{18} 3.4×10^{19}	9×10^{17} 8×10^{18}

- Bell (2003) gave functional forms of the relation between SFR and 1.4 GHz flux for galaxies with luminosities > L* (better calibrated) and < L* (more of an extrapolation)
- Faint dwarfs have luminosities lower than what is expected from the calibration based on brighter galaxies

Results of stacking

Sample/galaxy	Number of galaxies	1.4-GHz flux (mJy)	70 µm flux (mJy)	q70	From Appleton et al. (2004)
NVSS	57	0.9±0.2		2.0±0.2	1.99 ± 0.17
MIPS 70 µm	26		83±5		
Common	24	0.8 ± 0.3	90±8	2.0 ± 0.4	1.99 ± 0.17
UGC 5456	1	3 ± 1	560 ± 30	2.3 ± 0.3	2.15±0.16

• Ratio of the mean 1.4 GHz and 70 μ m fluxes calculated following Appleton et al. (2004) \rightarrow errorbars using bootstrap resampling

• 'Conspiracy' maintains correlation (Bell, 2003; Lacki et al., 2010) \rightarrow both 1.4 GHz and 70 µm fluxes less than what is expected for brighter galaxies

Estimating magnetic field strength

• SFR_{FUV} \rightarrow SFR_{Ha} (Roychowdhury et al. 2011) \rightarrow luminosity \rightarrow thermal radio emission from HII regions using Ha flux (Caplan & Deharveng 1986) \rightarrow subtracted from total flux to get non-thermal flux \rightarrow **Total equipartition magnetic field** (Beck & Krause 2005)

Sample/ galaxy	SFR_{FUV} $(M_{\odot} yr^{-1})$	$L_{\rm H\alpha}$ (erg s ⁻¹)	L_{thermal} (W Hz ⁻¹)	Non-thermal percentage	<i>B</i> (μG)
NVSS MIPS 70 μm	3.8×10^{-3} 3.0×10^{-3}	5.7×10^{38} 4.1×10^{38}	$\sim 8 \times 10^{17}$	\sim 70 per cent	~1.6
Common UGC 5456	3.0×10^{-3} 1.9×10^{-2}	4.1×10^{38} 4.5×10^{39}	$\sim 7 \times 10^{17}$ $\sim 6 \times 10^{18}$	~ 40 per cent ~ 50 per cent	$\sim 1.4 \\ \sim 1.8$

• ~20% of those in spiral galaxies \rightarrow but similar to what was predicted from trends between B and SFR in starburst dwarfs from Chyzy et al. (2011) \rightarrow **not strong enough to effectively seed the Inter Galactic Medium** (model of Chyzy et al. 2011)

Slope of the Radio-FIR relation

Summary

- We used stacking to detect the radio continuum emission from extremely faint dwarf irregular galaxies
- Both the radio and 70 micron fluxes are lower than those predicted from correlations with SFR seen in L* galaxies
- But the ratio of the two fluxes, the 'q' values is consistent with that measured for brighter galaxies
- The fluxes are also consistent with a super-linear slope of the non-thermal radio-FIR correlation → extending over 8 orders of magnitude
- The 'equipartition' total magnetic fields estimated are low, implying galaxies of this kind could not have seeded the IGM with magnetic field
- Giant Metrewave Radio Telescope (GMRT) and archival VLA observations of a sample of nearby dwarf irregulars with archival Hα, FUV and FIR observations, at 1.4 GHz and 325 MHz
- Spatially resolved study of the radio-FIR correlation & non-thermal spectral index planned with few hundred parsec spatial resolution