Monitoring campaign of bright sources

M. Orienti (INAF-IRA)

F. D'Ammando, M. Giroletti, G. Giovannini (INAF-IRA) S. Koyama, K. Hada, K. Akiyama, H. Nagai, M. Kino, M. Honma (Genjy Team)

M. Orienti

Eating VLBI - Bologna

The extragalactic y-ray sky

EGRET: 100% RL-AGN

In the 2LAC (Ackermann+11):

- 97% blazars
- 3% other objects MAGN
 - CenA lobes (Abdo+10)
- RL-NLsy1
- RQ AGN+SFG (CR)
 - NGC1068 (CR+AGN) Hayashida+13

Strong γ-ray emitters:

- High radio luminosity
- Fast apparent jet speed
- High variability Doppler

Savolainen+ 2010, Lister+ 09, Kovalev+ 2009

Extragalactic γ-ray sky dominated by radio-loud AGN

Eating VLBI - Bologna

Relativistic jets

Non-thermal emission

- Low energy: synchrotron
 Relativistic electrons can scatter low energy photons
- High energy: inverse Compton
 Seed photons:
- external photons from torus, disk, BLR... (External Compton)
- their own synchrotron photons (Synchrotron-self Compton)

Luminosity $\sim 10^{49} - 10^{50}$ erg/s Linear size \sim (sub-)pc to Mpc

M. Orienti

Eating VLBI - Bologna

R

WHERE? WHO?

Magnetic field • Sub-pc scale reconnection

Internal shock

Reconfinement

shock

Standing conical

IR from torus

HOW?

UV, optical

from **BLR**

Synchro from different e⁻ population

Synchro from different e⁻ population

M. Orienti

Eating VLBI - Bologna

10/13/2014

Ghisellini+08

UV

BLR

TORUS

• Two-zone model

• pc scale

• > 10 parsec

Velocity gradient

shock

3C 454.3: γ-ray light curve

3C 454.3 was the most active blazar in gamma rays during the first 3 years of Fermi operation. Then it entered in a sleeping state. Now it is waking up...

Eating VLBI - Bologna

The y-ray region

M. Orienti

The y-ray region

The increase of **γ-ray and mm emission** seems **simultaneous**. At 15 GHz it is delayed by about 2 months.

Co-spatiality of γ-ray and mm emission produced on pc scale

Sikora+08

Reconfinement shock in toroidal magnetic field + IR photons

- IR photons from the dusty torus
- Synchro photons from different e⁻ population

Eating VLBI - Bologna

M. Orienti

Magnetic field

- Single dish: EVPA rotates of about 90°
- VLBI: Flux and polarization dominated by the knot ejected in Dec 2009.

Knot EVPA parallel to the jet axis, as expected for internal shock or reconfinement shock in a **toroidal magnetic field** (e.g. Sikora+08)

Jorstad et al. 2013

Mar 11

Jul 11

M. Orienti

Eating VLBI - Bologna

Why study PKS 1510-089?

- FSRQ at z=0.361
- Strong variability across the entire e-m spectrum
- Highly superluminal jet components ejected close in time with a γ-ray flare
- Detected at VHE (E>100 GeV)

High level of polarized emission in radio and optical bands
Large rotation of the EVPA

close in time with $\gamma\text{-}\text{ray}$ flares

Eating VLBI - Bologna

Multi-wavelength analysis

The peak flux density is not simultaneous at the various frequencies due to opacity effects.

In the millimeter regime the maximum occurs at the end of September, although the sparse time coverage does not allow an accurate estimate.

At decimeter wavelength (2.6 GHz), the flux density was still increasing on 2012 January.

Eating VLBI - Bologna

The origin of the y-ray emission

The huge radio flare reached its maximum in the millimeter close in time with the γ -ray flare of 2011 October, suggesting a common emitting region. If the onset of the mm flare is a consequence of a shock propagating along the jet, it turns out that the γ -ray flare occurs off-nuclear:

The July **γ**-ray flare may be due to a **first perturbation occurring in the central region opaque to the radio emission.** As it propagates it becomes visible at longer wavelengths. **As it passes through a standing shock a second γ-ray flare is produced**, while the shock becomes visible as a superluminal knot.

M. Orienti

Eating VLBI - Bologna

Light curves

VERA lc poorly sampled, but in agreement with F-GAMMA

M. Orienti

Eating VLBI - Bologna

Towards the future

KAVA can image the jet base

M. Orienti

Eating VLBI - Bologna

MOJAVE is changing strategy

B1950 Name ≑	J2000 Name \$	Common Name \$	Right Asc. (J2000) \$	Declination \$	Z \$	Opt∵≑ ID∵≑	SED Class	Radio Spectrum≑	Fermi 2FGL Name 🗘		
<u>0011+189</u>	<u>J0013+1910</u>	RGB J0013+191	00 13 56.376	+ 19 10 41.915	0.477	В			J0013.8+1907		
<u>0019+058</u>	<u> J0022+0608</u>	PKS 0019+058	00 22 32.441	+ 06 08 04.269		В	LSP		J0022.5+0607		
<u>0044+566</u>	<u>J0047+5657</u>	GB6 J0047+5657	00 47 00.429	+ 56 57 42.395]	В			J0047.2+5657	◀	
<u>0138-097</u>	<u>J0141-0928</u>	PKS 0139-09	01 41 25.832	- 09 28 43.674	0.735	В	LSP	Flat	J0141.5-0928		DA 33
0151+081	<u>J0154+0823</u>	GB6 J0154+0823	01 54 02.770	+ 08 23 51.068	0.681	В	ISP		J0153.9+0823		
<u>0159+723</u>	<u>J0203+7232</u>	S5 0159+723	02 03 33.385	+ 72 32 53.667]	В	LSP		J0203.6+7235		
1215+303	1217+3007	ON 325	12 17 52.082	+ 30 07 00.636	0.13	в	HSP	Flat	J1217.8+3006		
1222+216	1224+2122	4C +21.35	12 24 54.458	+ 21 22 46.389	0.434	Q	LSP	Flat	J1224.9+2122		
1224-132	1226-1328	PMN J1226-1328	12 26 54.419	- 13 28 38.986		В	ISP		J1226.7-1331		
1226+023	1229+0203	3C 273	12 29 06.700	+ 02 03 08 598	0.1583	Q	LSP	Flat	J1229.1+0202		
1236+077	<u> 1239+0730</u>	PKS 1236+077	12 39 24.588	+ 07 30 17.189	0.4	U	LSP		J1239.5+0728	←	M 87
1246+586	<u>J1248+5820</u>	PG 1246+586	12 48 18.785	+ 58 20 28.717		В	ISP		J1248.2+5820		111 07
			C.	Y	ſ	_	·				
1441+252	1443+2501	PKS 1441+25	14 43 56.892	+ 25 01 44.491	0.939	Q	LSP		J1444.1+2500		
<u>1537+279</u>	<u> 1539+2744</u>	MG2 J153938+2744	15 29 39.137	+ 27 44 38.211	2.191	Q	LSP		J1539.5+2747	•	1510-089
1542+616	<u> 1542+6129</u>	GB6 J1542+6129	45 42 56.944	+ 61 29 55.346		В	ISP		J1542.9+6129		
1546+027	1549+0237	PKS 1546+027	15 49 29.437	+ 02 37 01.163	0.414	Q	LSP	Flat	J1549.5+0237		
1549+089	<u>J1552+0850</u>	TXS 1549+089	15 52 03.262	+ 08 50 47.336		В			J1551.9+0855		
1551+130	1553+1256	OR 186	15 53 32.698	+ 12 56 51.716	1.308	Q		Flat	J1553.5+1255		
1553+113	<u>J1555+1111</u>	PG 1553+113	15 55 43.044	+ 11 11 24.365		В	HSP		J1555.7+1111		
1557+565	1558+5625	VIPS 0926	15 58 48.289	+ 56 25 14.120	[В	LSP		J1559.0+5627		
1633+382	<u>J1635+3808</u>	4C +38.41	16 35 15.493	+ 38 08 04.500	1.813	Q	LSP	Flat	J1635.2+3810	•	DA 400
1637+574	<u>J1638+5720</u>	OS 562	16 38 13.456	+ 57 20 23.979	0.751	Q	LSP	Flat			
1638+118	1640+1144	CRATES J1640+1144	16 40 58.893	+ 11 44 04.212	0.078	G			J1641.0+1141		

M. Orienti

VERA monitoring of the bright sources is crucial for investigating the variability of the core region

KAVA can pick up the jet structure and reveal changes in the jet

M. Orienti

Eating VLBI - Bologna

Towards the future

Italy+Japan will provide very long — The angular resolution will improve of ~ an order of magnitude

M. Orienti

Eating VLBI - Bologna

Towards the future

VLBA

KAVA+Italy

Eating VLBI - Bologna