KaVA 43 GHz observation of Sgr A* with 1-Gbps recording

G. Zhao, M. Kino, K. Akiyama, and B.W. Sohn on behalf of the KaVA AGN sub-workgroup

Outline

- Introduction of Sgr A*
- Related KaVA array Key Science Project
 - uv coverage
- Preliminary results from one of the test observations
 - Observation and data analysis
 - Maps and Gaussian models
 - Comparison with previous measurements

Background: Sgr A*

Sgr A*: The GC SMBH

- Nearest SMBH
 - ~ 4 × 10⁶M_{solar} BH at 8kpc
- Largest angular size
 - $1 R_{s} \sim 0.01 mas$
- The best laboratory for studying SMBH
- Emission mechanism:
 - RIAF (Yuan+ 2009),
 - Jet (Falcke & Markoff 2000)

Background: Sgr A*

- Observed size: λ^2 relation
 - Interstellar scattering
 - Less dominate at above 22 GHz
- Intrinsic size:
 - $-\lambda$ dependence
 - photosphere of an optically thick plasma (Loeb & Waxman 2008)

Background: Sgr A*

Variability

KaVA Array

KaVA

Imaging capability of KaVA : Niinuma-san's talk

Configuration

uv coverage for Sgr A*

KaVA KSP

monthly monitoring of Sgr A* at 43 GHz as part of the KSP Starts in September 2014, after several test observations

Kino-san's talk

Test Observation: R13280A

- 2013 Oct 07
- 1-Gbps recording
- K & Q frequency switching
 UT 05:15~06:35 K; 06:45~08:05 Q; 08:15~09:35 K; 09:45~11:05 Q
- Target: Sgr A*; Calibrators: NRAO530, Sgr B2 (K), VX Sgr (Q), OH0548 (Q)
- Obs_log
 - R13280a<a-d> (SrgA* at Q)
 - Mark5B & DIR-1000
 - Missing Scan 1-2 at Yonsei during r13280ac
 - Rain at Tamna between r13280ac ad

Tsys plot Q band

Data analysis

- Amplitude calibration
 - A priori: ACCOR+ APCAL
 - Template method: ACFIT(calsour VX Sgr, OH 0548)
- Manual P-Cal with FRING
 - calsour 'nrao530'
- Fringe-fitting for Sgr A*
 - Combining all Ifs
 - Narrow delay and rate search window
 - Lower SNR cutoff

Data analysis

- Bandpass calibration
 - calsour 'nrao530', 'sgra'
- Editing
- Calibrating
 - calsour 'sgra',"
 - solint 0.1; aparm(7) 0.1
- Time averaging
 - 15 sec

Q band Imaging of Sgr A* Visibility amplitude and phase vs. uv distance

Q band Imaging of Sgr A* • uv-coverage achieved

Q band Imaging of Sgr A*

• PSF

Q band Imaging of Sgr A* natural weight clean map

15

Q band Imaging of Sgr A* Model-fitting

- Flux
 1.086Jy
- Major axis
 0.75 mas
- Axis ratio0.57
- PA 70.48

$$\phi_{\rm int} = \sqrt{\phi_{\rm maj}^2 - \phi_{\rm scatt}^2}.$$

Intrinsic size: 0.36 mas

Comparing with previous VERA monitoring

- Clean map
- VERA uv-coverage

200

V (10° A)

-200

Comparing with previous VERA monitoring

• KaVA uv-coverage

Clean map
 DR >300

Measurements

Summary

- Sgr A* is the best laboratory for studying SMBH. Regular monitoring of the variability would be important for understanding the emission mechanism
- KaVA has started monthly monitoring of Sgr A* at Q band with 1Gbps as part of the KSP. KaVA has more shorter baselines compared to other arrays which are important for observing Sgr A*
- Comparing with VERA only observations, KaVA can provide higher quality maps and more reliable size measurements
- We could expect valuable outcome from the KaVA KSP