Korean VLBI Network

- Recent Activities -

Multifreugency AGN Survey with the KVN

Discover high frequeActivities -

Taehyun Jung (KASI) on be half of KVN team

First Light from 22/43/86/129 GHz Simultaneous Single Dish Observation

KVN Activities

High Precision Astrometry

GPS Installation - close collaboration with KASI GPS group

1. KVN antenna position

- displacement of KVN antenna position
- In-Variant Point (IVP) measurement
- ➔ To monitor accurate KVN antenna positions

2. Atmospheric model calculation

- Wet delay & TEC estimation

KYS

→ To improve a phase referencing capability & astrometric accuracy

GPS applications towards better modeling of atmosphere

- ZTD were obtained from GPS at each KVN site
- GPS sampling period ~ 5 min
- Example: one PolarCap (1803+784), 24hr
- Correlation model of wet delay (line of sight)
 - model path = [ZWD(correlator model) + Δ ZWD] / sin(elevation)
 - comparison: "true path (from GPS) model path (from CALC)"

IVP measurements from K-band Geodesy **Observational Status** 2011 : r11361k (2011/12/27) * only KYS solution was obtained 2012 : r12271k (2012/09/27) * all solutions were obtained * waiting correlation & analysis 2013 : r13088k (2013/03/29), r13140k (2013/05/20), r13251k (2013/09/08), r13313k (2013/11/09) 2014 : r14028k (2014/01/28), r14095k (2014/04/05), r14159k (2014/06/08), r14246k (2014/09/03) -3.04228087e6 +4.04590264e6 +3.8673743e6 -0.010 0.08 0.06 Yonsei X 0.07 -0.0150.05 0.06 -0.0202012/12/27 0.0457 GPS - VLBI(MJD 56685) 0.04 0.05 -0.0252013/03/29 0.0600 0.04 0.03 2013/05/2 -0.030 2014/01/28 Yonsei Z 0.03 0.02 -0.035-0.01022013/09/08 Yonsei Y 0.02 0.01 -0.0400.01 -0.045 0.00 0.00 56200 56300 56400 56200 56500 56600 56700 56200 56300 56400 56500 56600 56700 56300 56400 56500 56600 100 56700 +3.68737996e6 -3.2872685e6 +4.02345014e6 0.040 0.06 -0.02Ulsan X 0.035 0.05 -0.040.0351 0.030 0.04 0.025 0.0523 -0.06Ulsan Y 0.020 0.03 -0.08-0.07560.015 0.02 Ulsan Z 0.010 -0.100.01 0.005 0.000 -0.12 0.00 56200 56300 56200 56300 56400 56500 56600 56700 56200 56300 56400 56500 56600 56700 56400 56500 56600 56700 -3.17173152e6 +4.29267848e6 +3.48103872e6 -0.005 0.06 0.07 Tamna Z -0.0100.06 0.05 Tamna Y Tamna X -0.0150.05 0.04 -0.0200.04 0.03 -0.025 0.03 -0.0427-0.0048-0.03800.02 -0.0300.02 0.01 -0.035 0.01 -0.040 L_____ 56100 0.00 56200 0.00 56200 56300 56400 56500 56600 56700 56300 56400 56500 56600 56700 56200 56300 56400 56500 56600 56700

Offsets: X: 0.5~7.5 cm, Y: 3.5~6.0 cm, Z: 4.3~5.2 cm

X-axis: MJD Y-axis: Position (m)

Monitoring of Time Variation of GPS & VLBI positions of KVN antennas

- There seems to have similar trend between GPS & VLBI positional variations, but not so tight! → more data is essential
 - Daily GPS measurements with error bars are necessary
 - Rough estimation of GPS measurement errors: ~3mm in X & Y, ~5mm in Z axis

Feasibility Test of KVN Antenna Reference Position (IVP) Target & Optical Survey Matrix

- 1. Define Pillar Position
- 2. Target Installation
- 3. Optical Survey
- 4. Analysis (GPS & Optical Tie)

IVP measurements of KVN Tamna (2014 Sep 29-30)

Targets for optical survey

IVP measurements of KVN Tamna (2014 Sep 29-30)

IVP Measurements Discussions

Leica Instruments

Developments of Phase Tone Calibration System

1st approach: Quasi-optics Injection Method

Reference signal frequency : 200 MHz

- Comb generator : commercial NLTL(2.4mm connector, spec: <50 GHz)
- Quasi-optics injection using DRWH, ellipsoidal mirror & Mylar sheet
- Custom designed comb needed for 129 GHz-band power generation
- Equalization problem have to be solved

Developments of Phase Tone Calibration System

- 2nd approach: Digital P-cal Method
 - Transmission Line injection thru coupling ports using Low-frequency Phase calibrator, PDRO, and multipliers
 - Expected to be no big problem comparing to quasi-optics injection method
 - No component development needed
 - Quasi-optics components are not calibrated.

KVN Activities High Sensitivity

2Gbps (512MHz BW) using Mark5B+

KVN 8Gbps Operations with FILA10G & Mark6

with FILA 10G + Mark6
Mark6 : 8Gbps (BW = 4 x 512MHz) : 2Gbps per each 22/43/86/129 GHz

KVN 8Gbps Operations with FILA10G & Mark6

KVN Activities

International Collaborations

Quasi-Optics as a Powerful Tool of mm-VLBI Collaboration with Yebes 40m & VERA Mizusawa

History & Plans 2011 Nov. : K/Q/W QO discussion 2014 Jan-Aug : QO design 2014 Jun : KASI-IGN MOU 2014 Sep : Manufacture

- 2014 Oct : Shipping to Yebes
- 2014 Nov : Installation & Initial Test
- 2015 Jan : K/Q band fringe test

THE NATIONAL GEOGRAPHIC INSTITUTE OF SPI

EA ASTRONOMY AND SPACE SCIENCE IN

SiO

History & Plans

- 2013 Nov : Manufacture
- 2013 Dec. : Shipping & Installation
- 2014 Jun : K/Q VLBI fringe test
- 2014 Sep : Fringe Detection
- 2014 Dec : Science verification test

H₂0/SiO Simultaneous fringes of ORION-KL

Phase Correction with QO systems ($K \rightarrow Q$, OJ287)

- K-band fringe phase solutions of OJ287 were applied to calibrate Q-band data
- Visibility phase of Q-band calibrated by K-band shows more stable phase than raw data although there are high phase rates at MIZ related baselines
 The feasibility of K/Q simultaneous observing system has been demonstrated !!
- Science demonstration will be made on be half of KaVA science sub-working group

Multi-Frequency VLBI Applications The BEST way to overcome atmospheric barriers

Weak source detection
Astrometry (AGN core-shift)

Multi-Frequency Phase Referencing (MFPR)

$$\Phi^{h} = \Phi^{h}_{str} + 2\pi v^{h} (\tau_{g} + \tau_{C} + \tau_{inst} + \tau_{trop} + \tau_{ion}) + \Phi^{h}_{LO}$$

$$\Phi^{l} = \Phi^{l}_{str} + 2\pi v^{l} (\tau_{g} + \tau_{C} + \tau_{inst} + \tau_{trop} + \tau_{ion}) + \Phi^{l}_{LO}$$

slow varying term

 $-\frac{V_h}{-}\Phi_l^{LO})$

 V_{I}

 $r = v_h / v_l$

$$\Delta \Phi = \Phi^h - r\Phi$$

 Φ^{l}

str

$$\Delta \Phi = \Phi_h - \frac{v_h}{v_l} \Phi_l = \Phi_h^{str} + 2\pi v_h (\tau_h^g - \tau_l^g) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_0^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_l^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} + (\Phi_h^{LO} - \Phi_h^{LO}) - 2\pi \left(1 - \frac{v_h^2}{v_h^2}\right) \frac{v_h^2}{v_h^2} \tau^{ion} +$$

Source
StructureCore-shift
diff in maser linesionosphereinstrument

By doing Self-calibration again for longer solution interval, we can get an image at higher frequency

43GHz Visibility Phase referenced by 22GHz

PHASE VS TIME FOR K13015A-Q.UVCOP.1 VECT AVER

Raw visibility phase at 43GHz

86GHz Visibility Phase referenced by 22GHz

PHASE VS TIME FOR K13015A-W.UVCOP.1 VECT AVER

Raw visibility phase at 86GHz

129GHz Visibility Phase referenced by 22GHz

PHASE VS TIME FOR K13015A-D.UVCOP.1 VECT AVER. IF 1 - 4 CHAN 1 - 256 STK LL

Raw visibility phase at 129GHz

86GHz Visibility Phase referenced by 43GHz

PHASE VS TIME FOR K13015A-W.UVCOP.1 VECT AVER

Raw visibility phase at 86GHz

Source Detection at High Frequency by MFPR

- 1308+326 & NRAO512 were not detected at D-band
- After applying MFPR with1 hour integration, these sources are detected with high SNRs (~130, ~80)
 - The FIRST detection of 1308+326 & NRAO512 at 129GHz
- SNR : 1308+326 ~ 130, NRAO512 ~ 100
- Flux: 1308+326 : 300~420 mJy NRAO512 : 160~250 mJy

1308+326 NRA0512 위상보정 위상보정 위상보정 위상보정 平(後) 전(前) 平(後) 전(前) 탐락 음산 담락-육산 -180° 80 탐라-언세 탐라-언세 Visibility Phase bility 을산-언세 을산-연세

1 hour 1 hour

1 hour 1 hour

SNR NRAO512 (1Hr integration)

Fast Antenna Switching Phase Referencing M87-M84 Test at 22Ghz

Fast Antenna Switching 3 deg/sec

Target

Calibrator

M87

8

Fast Antenna Switching Phase Referencing M87-M84 Test at 43Ghz

кт-ки	(1-2)		×	8	* *		×		×.		×		
x	* **		*		*			×	~ × × ×	***	×	33. 	
××××				* * *	× X			××			×x ×	×××	
			×X	× ××××	×**	x x ×		****	* *	* **		××	ે
) — [°] .	* *	×××	× ***	* * *	×	×××	**	****	24 × 2 2900	× ×	***	***	
∂ — ^{**}	×**	x* ^	××××			**	*x **	×××	× × ×	××××	***	x×	2
a — ××	* *		×			×××	×××× ×××		×	×.	x	¥K.	
	***	× ×	25	X	*	*	*	×	1.1.20		* *	*	
	(1-3) *	3.	× × × ××	* * *	** **	**	*	۱. *	× , *×	* * x	× ×	** x x * x	
a — 🖏	× *	ž×× ×	x ² ×	XXXXX	****	××××	*~* X	***	* * Č	× ×* ×	× ~~~	XXXX	
a — x**	***	×		% ×	***	×××	#**	×	× ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	××	× .*	×××	,
a — ×	x ^{20x}	x	××	×					×	×	×**		
ax	* *		**			* *	××		×** *				
a — ^{x, x}	* * *					x		×		*			
×*	1986	20	×****	8x - 8 x	××	×		55 16	*	*	*	24 - 22,21	29
80 X	×,	×	x *	*	×	× .**	×	×		×		×	,
	(2-3) *	×2 ×,×	×× x × x	×*	k ×	28 C	x * *	× X, ×	× × ×	x	***	×××	3
	* *	x×	****	**	× *** ***	×	***	***	* ***	****	* x*	××××××	
a — x*,	×××	× ×	×	×	* * *	×.		x*	X	×××××		*	,
) — ××			× ×				*			x			
3 <u> </u>				*	**	× *	××			× i			
a — ×	x	×	x	×				* **		××	(×)	x	
	× ~	*	X	×	×	*	x		× ××	×	××	×	
	*	*			14	×x 15	× **	×	*	¥*	1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		_

Multifrequency AGN Survey with the KVN

Discovering high-frequency sources & Maximizing the KVN uniqueness

Taehyun Jung on be half of KVN Group

mm-VLBI study of AGN

 High-frequency VLBI (mm-VLBI) observations are required to understand of the physical processes at the innermost region in AGN and in the vicinity of supermassive black holes

- much less affected by the source intrinsic opacity effects

- Determination of the physical parameters of the innermost & most compact component (e.g. the jet base)
 - constraints for current jet and shock models (Blandford & Königl 1979, Königl 1981, Marscher & Gear 1985 etc)
 - multi-band spectra & VLBI structures

VLBI Surveys

Name	Wavelength	# of Sources	Reference	
CJF survey	18 & 6 cm	293	Pollack et al. 2003	
ICRF/RDV	13 & 3.6 cm	~ 500	Ojha et al. 2004	
VLBA Calibrator Survey	13 & 3.6 cm	> 3400	Kovalev et al. 2007	
VSOP VLBApls	6 cm	374	Fomalont et al. 2000	
VSOP Survey	6 cm	~ 300	Dodson et al. 2008	
VIPS	6 cm	1127	Helmboldt et al. 2007	
2cm Survey	2 cm	250	Kovalev et al. 2005	
MOJAVE	2 cm	> 133	Lister & Homan 2005	
VERA FSS / GaPS	1.35 cm	500	Petrov et al. 2007	
ICRF 22 & 43 GHz	1.37 & 0.7 cm	~100	Lanyi et al. 2010	
GMVA 3mm	3 mm	123	Lee et al. 2008	
TANAMI	3.5 & 1.3 cm	80	Ojha et al. 2010	

VLBI Surveys

Name	Wavelength # of Sources Ref		Reference		
CJF survey	18 & 6 cm	293	Pollack et al. 2003		
ICRF/RDV	13 & 3.6 cm	~ 500	Ojha et al. 2004		
VLBA Calibrator Survey	13 & 3.6 cm	> 3400	Kovalev et al. 2007		
VSOP VLBApls	6 cm	374	Fomalont et al. 2000		
VSOP Survey	6 cm	~ 300	Dodson et al. 2008		
VIPS	6 cm	1127	Helmboldt et al. 2007		
2cm Survey	2 cm	250	Kovalev et al. 2005		
MOJAVE	2 cm	> 133	Lister & Homan 2005		
VERA FSS / GaPS	1.35 cm	500	Petrov et al. 2007		
ICRF 22 & 43 GHz	1.37 & 0.7 cm	~100	Lanyi et al. 2010		
GMVA 3mm					
TANAMI High-frequency VLBI observations with the KVN					
KVN Q-CAL survey	7 mm	638	Petrov et al. 2012		
KVN W/D-CAL survey	3.5 & 2.3 mm	> 500 (W)	Lee S.S et al. (In prep.)		
KVN K-CAL survey	1.3 cm	> 400 (K)	Lee J.A et al. (in prep.)		

KVNCS1 (single dish)

KVNCS2 (KVN VLBI)

preliminary detection rate ~ 80% (444/556)

Lee in prep.

VLBI sources at K-band

444 KVNCS2 sources + 858 known calibrators at K band

Full MASK Program

- More than 1300 sources (> dec -30°) are available at K-band VLBI
 - radio spectra from 20GHz ~ 130 GHz (incl. previous catalogs)
 - 22/43/86/130 GHz source positions with their simultaneous spectra
- Total observing time estimated ~ 650 hours
 - 30 min / source, several years
 - 10 / 15 / 35 / 50 mJy sensitivity limit at 22/43/86/129GHz
- KVN Legacy Program or KVN Institute Program in near future

Sensitivity

KVN 1 Gbps 4CH operation

Frequency Band	22 GHz	43 GHz	86 GHz	129 GHz			
Bandwidth (MHz)	64						
System temperature (K)	80	90	180	200			
SEFD (Jy)	981	1196	2870	3986			
Integration time (sec)	1800 (30 min)						
Sensitivity (mJy)	2.3	2.8	6.8	9.4			
5σ Sensitivity (mJy)	11.6	14.1	34.0	47.2			

KVN 3 Gbps 2CH operation: 1Gbps(K) + 2Gbps(Q,W,D)

Frequency Band	22 GHz	43 GHz	86 GHz	129 GHz		
Bandwidth (MHz)	256	512				
System temperature (K)	80	90	180	200		
SEFD (Jy)	981	1196	2870	3986		
Integration time (sec)	1800 (30 min)					
Sensitivity (mJy)	1.2	1.0	2.4	3.3		
5σ Sensitivity (mJy)	5.8	5.0	12.0	16.7		

KVN 8 Gbps will be perfect ! (test this year!)

Pilot MASK program

- Statistical demonstration of the feasibility of KVN MFPR for weak radio source detections
 - flux & fringe SNR limits
 - practical coherence time
 - weather condition
- Multi-frequency catalogs of selected samples
 - Physical properties at four radio frequencies
 - flux densities, spectral index, compactness, populations etc.
 - High frequency radio positions (absolute astrometry)
 - Provides high frequency VLBI calibrators
- 1st Test: 175 compact radio sources
 - 158 sources of them were non-detected during 86 GHz fringe test (W-CAL1 by S. Lee) + 17 bright sources
 - Four pilot observations have been made (122 sources)
- 2nd Test : K/W band astrometry
 - Test K/W band VLBI geodesy observations (ICRF sources + W-band sources)
 - Testing the registration of source positions (relative telescope positions)

Future Plan & Prospects

- Data Reduction in Progress
- Classifying samples according to the scientific merits
- Registering high frequency VLBI source positions (astrometry)
- Accurate amplitude calibration is still very difficult with KVN three stations
 - roughly ~ 30% errors
 - flux calibrators (monitoring), accurate gain measurements
- Collaboration!!
 - together with KVN (internal) users
 - MFPR data reduction tutorial & feedback
 - 13 Aug 2014, then monthly (KVN Calibration WG)
- Plan & discussion for more ideas & coming fruits
- E-KVN : 2 and more KVN antennas e.g. more than 3 times of sensitivity improvement

New Method in mm-VLBI Astrometry

Simultaneous multi-frequency observation

Perfect calibration to the troposphere

No assumptions such as optically thin components, jet direction

Ideal methods, especially mm/submm-VLBI

Unique access to the inner most region of the Jet
→ High precision VLBI astrometry can be done at high frequencies!!

International Collaborations!!

VERA 20m. 22/43 Fringe Test 2014 June

Yebes 40m 22/43/(86/129) 22/43 Installation in 2014 Nov

VLBA (MK) 25m discussion on QO 22/43/86 (2014 May)

ATCA 22m x 6 43/86 Test in 2014 Sep

Noto or Sardinia in near future??

For the most powerful mm-VLBI network

서울~울산~제주 삼각관측 우주와의 '소통' 한걸음 더

12일 새째 제주도 사귀로 하빠에서 북극성용 중심으로 취직했으라며 했고 있는 별물을 향해 저용 컨퍼 크기의 점심 안행나가 국 또 옷이 있다. 사람은 전세대 글신 문실산대 과축 당러대를 공간으로 연결하는 한국은주진파라하당(NN) 지입의 마무리 다보로 시 개도 토미대 탑리전해하는데의 전마양원경이 지난 1일 상황식물 미치고 시험 가동석 플이건다. 전파양원경 색 대가 연결되면 사 특에 새 제주 하나신의 방 히 통은 선명화 수 있는 정민도를 있지 된다. 하국구주진파라운영관 가용하면 우리도 우주의 플락질을 정철 제주해 열의 반성과 사람을 연구할 수 있고, 현면도 지구센동도 정될 오니슈(성화 수 있게 된다. 이 사신은 디디컬 환자 [1년 편간] 신리를 열여 찍었다.