USING MULTIFEED SYSTEMS for MULTIFREQUENCY mm-VLBI OBSERVATIONS from 18 to 100 GHz and ABOVE

Alessandro Orfei, INAF-IRA

Head of Receivers Team and in Charge of 32m Medicina

SCIENTIFIC NEEDS

- a. Observe at 3mm but adding lower frequencies is welcome (mm-VLBI)
- b. With as high sensitivity as possible ($\uparrow \eta_a$; $\downarrow T_{sys}$; $\uparrow t$; $\uparrow B$; dual pol.)
- Solve phase fluctuation problem at 3mm (WVR; PR; FFS; SFPR; Simultaneous v)
 The last one appears to be the most promising and efficient
- d. Observe with as high resolution as possible (many mm-antenna throughout the world)
 Upgrade the cm-antenna and/or a new receiving system at mm-VLBI observatories

SOME PAPERS Alef, 2003 Sasao, 2003 Middelberg, 2005 Roy, 2006 Jung, 2010 Sawada-Satoh, 2012 Rioja, Dodson, 2011

MULTIFREQUENCY SYSTEMS

A. Coaxial frequencies receiver

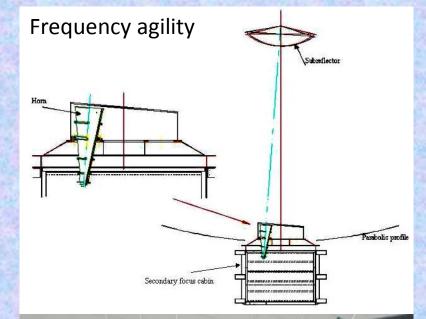
Two well separated bands only, many compromises on performance, particularly for secondary focus mounting. Simultaneity

B. Frequency agility systems

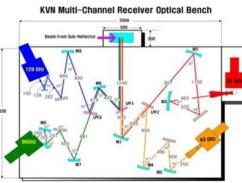
Need specific receiver arrangement and long and fast stroke of secondary mirror. Slow semi-simultaneity

C. Dichroic filters and mirrors (Quasi-optical systems)

Change the mechanical arrangement in the secondary focus cabin. <u>Simultaneity</u>


D. Multifeed with different frequency bands

No change in the mechanical arrangement of the receivers at the antenna. As many bands as needed into usual receiver dimension. <u>Fast semi-simultaneity or.....simultaneity (?)</u>


MULTIFREQUENCY SYSTEMS: EXAMPLES

COAXIAL, v2/v1≈4



QUASI-OPTICAL SYSTEMS

ARRANGING A SYSTEM ON THE ANTENNA

22GHz ready

7GHz re

5GHz ongoing

SRT configuration D=64m; F/D=2.34

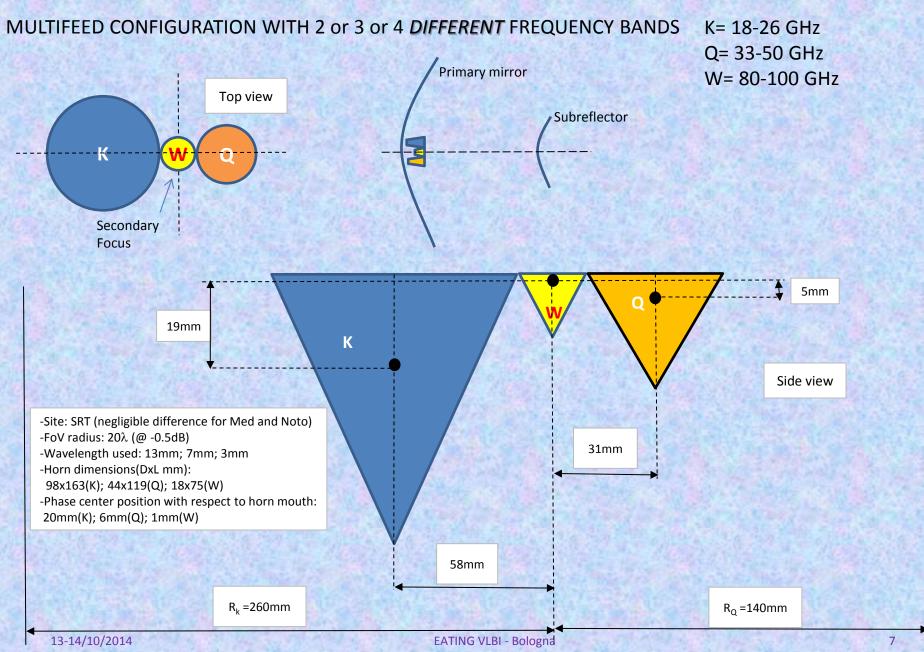
Med/Noto configuration D=32m; F/D=3.04

Beam from subreflector

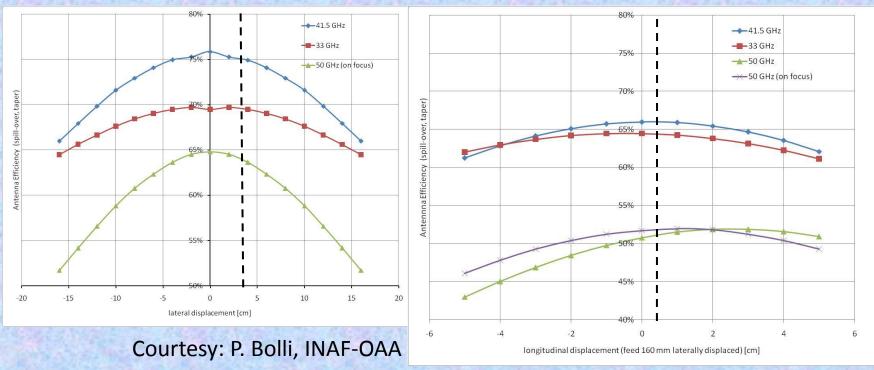
- Coaxial OK from mech. point of view **43GHz ongoing** NOK from e.m. point of view
 - Frequency agility NOK
 - Dichroic NOK

- Multifeed OK

	FREQUENCY AGILITY		
「「「「	Antenna	Switching time for secondary RX (s)	
	MED/NOTO	≤ 3	
	SRT	≥ 11	
	VLBA	7	


- Coaxial OK from mech. point of view NOK from e.m. point of view
- Frequency agility OK
- Dichroic NOK
- Multifeed OK

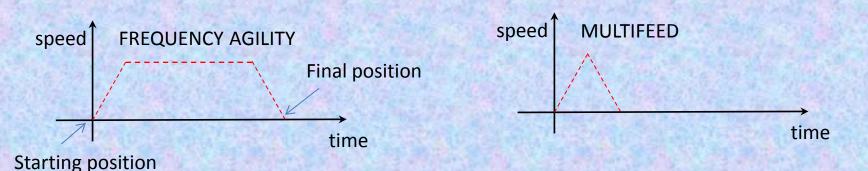
MULTIFEED SYSTEMS


FP7-Radionet «Apricot»

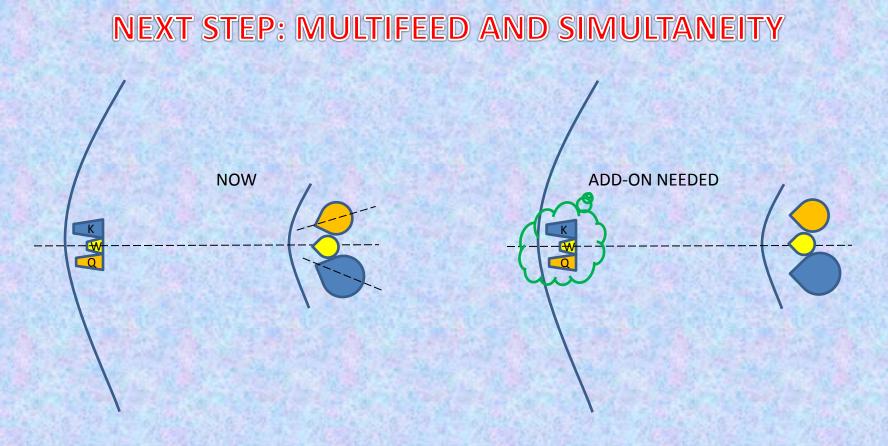
A MULTIFEED-MULTIFREQUENCY CONFIGURATION

NO LOSS IN PERFORMANCE

LATERAL AND LONGITUDINAL DISPLACEMENT SENSITIVITY: Q-band on SRT



For Med and Noto the situation is better because parabolic in shape


NOISE: MEASURES SHOW THAT Tsys DON'T CHANGE AMONG RECEIVERS OF THE MFEED

MULTIFEED-MULTIFREQUENCY PROS

MULTIFEED vs FREQUENCY AGILITY						
Antenna	Switching time with agility (s)	HPBW (arcmin)	Beam separation (<i>arcmin</i>)	Switching time with Mfeed (s)		
MEDICINA NOTO	≤3	1.7 (K band) 0.4 (W band) 0.85 (Q band)	2 (K band) 0 (W band) 1 (Q band)	<1		
SRT	≥ 11	0.83 (K band) 0.2 (W band) 0.45 (Q band)	1.3 (K band) 0 (W band) 0.7 (Q band)	< 1		

- 1. NO ANTENNA GAIN AND NOISE PERFORMANCE DEGRADATION
- 2. RECEIVER LIKE ANY OTHER AT THE OBSERVATORY (< 500mm in diameter)
- 3. ALLOWS FAST FREQUENCY SWITCHING, MUCH BETTER THAN FREQUENCY AGILITY
- 4. MAKES 'UNNECESSARY' THE FREQUENCY AGILITY

HOW COULD SIMULTANEITY BE OBTAINED ?

- BEAMFORMING NOT POSSIBLE BECAUSE OF THE DIFFERENT FREQUENCY BANDS
- QUASI-OPTICAL SYSTEMS ONLY IF OF VERY SMALL SPACE OCCUPATION
- OTHER

NEED INVESTIGATION

THANKS