

Dynamic simulations of the Galactic Dynamo based on supernova-driven ISM turbulence

Oliver Gressel*, Axel Brandenburg Astrophysics group, NORDITA, Stockholm

Abhijit Bendre, Detlef Elstner, Udo Ziegler & Günther Rüdiger MHD group, AIP, Potsdam

May 13-17, 2013

MKSP meeting, Sant'Antioco

* oliver.gressel@nordita.org

contents

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching
- 3 Going global
 - Description of disc model
 - Preliminary results

contents

Context

- The galactic dynamo
- MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching

3 Going global

- Description of disc model
- Preliminary results

contents

Context

- The galactic dynamo
- MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching
- Going global
 - Description of disc model
 - Preliminary results

The galactic dynamo MF-MHD in a nutshel

observations

Andrew Fletcher/Rainer Beck, SuW and Hubble Heritage Team, STScI/AURA

What is the origin of regular galactic magnetic fields?

- primoridial field, (i.e. frozen-in fossil record of galaxy formation)
- dynamo-generated field, (i.e. dynamically replenished)

Beck of the envelope

- **galactic rotation winds-up** B_{ϕ} $\tau_{\Omega} \simeq 2\pi/25 \, \text{kpc}^{-1} \, \text{km} \, \text{s}^{-1} \simeq 250 \, \text{Myr}$
- turbulent diffusion $\tau_{\rm d} \simeq (0.5 \, \rm kpc)^2 / 0.5 \, \rm kpc \, \rm km \, s^{-1} \simeq 500 \, \rm Mys$
- large observed pitch angle strongly favours dynamo

The galactic dynamo MF-MHD in a nutshel

observations

Andrew Fletcher/Rainer Beck, SuW and Hubble Heritage Team, STScI/AURA

- What is the origin of regular galactic magnetic fields?
 - primoridial field, (i.e. frozen-in fossil record of galaxy formation)
 - dynamo-generated field, (i.e. dynamically replenished)
- Beck of the envelope
 - **galactic rotation winds-up** B_{ϕ} $\tau_{\Omega} \simeq 2\pi/25 \, \text{kpc}^{-1} \, \text{km} \, \text{s}^{-1} \simeq 250 \, \text{Myr}$
 - turbulent diffusion $\tau_{\rm d} \simeq (0.5 \, \rm kpc)^2 / 0.5 \, \rm kpc \, \rm km \, s^{-1} \simeq 500 \, \rm Myr$
 - large observed pitch angle strongly favours dynamo

The galactic dynamo MF-MHD in a nutshel

supernova-driven turbulence

- interstellar medium highly turbulent
- energy deposited by supernovae, CRs, MRI, stellar winds, protostellar jets, ...
- 2-3 SNe per century in our own Milky Way

small-scale dynamo is simple (in a way...)

but how amplify regular fields in a turbulent environment? rotation + stratification → mean-field dynamo

The galactic dynamo MF-MHD in a nutshel

supernova-driven turbulence

- interstellar medium highly turbulent
- energy deposited by supernovae, CRs, MRI, stellar winds, protostellar jets, ...
- 2-3 SNe per century in our own Milky Way

・ロト (周) (E) (E) (E) (E)

small-scale dynamo is simple (in a way...)

but how amplify regular fields in a turbulent environment? rotation + stratification → mean-field dynamo

The galactic dynamo MF-MHD in a nutshel

supernova-driven turbulence

- interstellar medium highly turbulent
- energy deposited by supernovae, CRs, MRI, stellar winds, protostellar jets, ...
- 2-3 SNe per century in our own Milky Way

- small-scale dynamo is simple (in a way...)
- but how amplify regular fields in a turbulent environment? rotation + stratification → mean-field dynamo

The galactic dynamo MF-MHD in a nutshel

the α effect dynamo

- helical α effect in a single expanding SNR • Play
- breaking the homogeneity of the turbulence play

- Key mechanisms
 - rotation (and/or shear) → field-line stretching
 - helical flow component → avoid cancellation due to anti-parallel field
 - α effect couples the poloidal and toroidal field components
 - reconnection
 - \rightarrow restore original field-line topology

The galactic dynamo MF-MHD in a nutshel

the α effect dynamo

- helical α effect in a single expanding SNR • Play
- breaking the homogeneity of the turbulence play

- Key mechanisms
 - rotation (and/or shear) → field-line stretching
 - helical flow component → avoid cancellation due to anti-parallel field
 - α effect couples the poloidal and toroidal field components
 - reconnection
 - \rightarrow restore original field-line topology

正明 スポッスポッスラッムロッ

The galactic dynamo MF-MHD in a nutshel

the big picture

encapsulate the effect of the supernovae
 model the evolution of the large-scale field

O. Gressel

013-05-14 – LOFAR MKSP meeting, Sant'Antioco 6/27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The galactic dynamo MF-MHD in a nutshell

modelling the dynamo process

Mean-field approach:

- split into mean + fluctuation
 - $U = \overline{U} + u \text{ and } B = \overline{B} + b$
- derive mean-field equation

$$\partial_t \overline{\mathbf{B}} = \nabla \times \left(\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \bar{\mathcal{E}} - \eta \, \nabla \times \overline{\mathbf{B}} \right)$$

turbulent EMF $\bar{\mathcal{E}} = \overline{u \times b}$

- Parametrise small-scale effects $\overline{\mathcal{E}}$ as a functional of $\overline{\mathbf{U}}, \overline{\mathbf{B}}, \overline{f(\mathbf{u})}$
 - for sufficient scale separation

 $\bar{\mathcal{E}}_i = \alpha_{ij}\bar{B}_j - \tilde{\eta}_{ij}\,\varepsilon_{jkl}\partial_k\bar{B}_l$

Andrew Fletcher/Rainer Beck, SuW / Hubble Heritage Team, STScI/AURA

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The galactic dynamo MF-MHD in a nutshell

modelling the dynamo process

Mean-field approach:

- split into mean + fluctuation
 - $U = \overline{U} + u \text{ and } B = \overline{B} + b$
- derive mean-field equation

$$\partial_t \overline{\mathbf{B}} = \nabla \times \left(\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \bar{\mathcal{E}} - \eta \, \nabla \times \overline{\mathbf{B}} \right)$$

turbulent EMF $\bar{\mathcal{E}} = \overline{u \times b}$

- Parametrise small-scale effects $\overline{\mathcal{E}}$ as a functional of $\overline{\mathbf{U}}, \overline{\mathbf{B}}, \overline{f(\mathbf{u})}$
 - for sufficient scale separation

 $\bar{\mathcal{E}}_i = \alpha_{ij}\bar{B}_j - \tilde{\eta}_{ij}\,\varepsilon_{jkl}\partial_k\bar{B}_l$

Andrew Fletcher/Rainer Beck, SuW / Hubble Heritage Team, STScI/AURA

Measuring dynamo tensors Non-linear quenching

Context

The galactic dynamo
 MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Preliminary results

Measuring dynamo tensors Non-linear quenching

the nirvana code

Udo Ziegler's NIRVANA-III

- conservative (dual energy) MHD grid code
- 2nd-order central scheme + constrained transport (CT)
- 3rd-order Runge-Kutta time integrator
- block structured adaptive mesh refinement (AMR)
- efficiently MPI-parallel (space-filling-curve techniques for AMR)

Measuring dynamo tensors Non-linear quenching

local box simulations

Model geometry:

- local patch of interstellar medium, up to 1.6 kpc on edge ($\Delta \simeq$ 10 pc)
- vertical stratification up to ±6 kpc
- sheared galactic rotation

Physical ingredients:

- non-ideal MHD (+ heat conduction)
- optically thin radiative heating/cooling
- localised thermal energy input modelling the supernovae

Korpi, Brandenburg, Shukurov, Tuominen & Nordlund (1999)

O. Gressel

local box simulations

Model geometry:

- local patch of interstellar medium, up to 1.6 kpc on edge ($\Delta \simeq 10$ pc)
- vertical stratification up to ±6 kpc
- sheared galactic rotation

Physical ingredients:

- non-ideal MHD (+ heat conduction)
- optically thin radiative heating/cooling
- Iocalised thermal energy input modelling the supernovae

Korpi, Brandenburg, Shukurov, Tuominen & Nordlund (1999)

Measuring dynamo tensors Non-linear quenching

α -profiles

- dynamo effect $|\alpha_R|, |\alpha_{\phi}| \simeq 3 \,\mathrm{km \, s^{-1}}$
- diamagn. pumping $|\gamma_z| \simeq 7 \, \mathrm{km \, s^{-1}}$ directed inward
- |α|: |γ| consistent w/ SOCA results
- effect of galactic wind ū_z balanced by turb. pumping

・ロト ・ 同ト ・ ヨト ・ ヨ

12

Measuring dynamo tensors Non-linear quenching

$\tilde{\eta}$ -profiles

O. Gressel

Figure 4.10: Same as Fig. 4.9, but additionally including a mixed (anti-)symmetric contribution in the off-diagonal elements of $\tilde{\eta}$ (upper panels). Now the lopsided dipolar symmetry in the field reversals persists and closely resembles the features seen in the *direct* simulation H4 (lower panels).

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Measuring dynamo tensors Non-linear quenching

scaling relations (brute force)

dynamo effect as function of

supernova rate $\hat{\sigma} = \sigma/\sigma_0$ rotation frequency $\hat{\Omega} = \Omega/\Omega_0$ midplane density $\hat{\rho} = \rho/\rho_0$

scaling relations:

$$\begin{aligned} \alpha &= 2 \text{ km s}^{-1} \quad \hat{\sigma}^{0.4} \hat{\Omega}^{0.5} \hat{\rho}^{-0.1} \\ \gamma_z &= 12 \text{ km s}^{-1} \quad \hat{\sigma}^{0.5} \hat{\Omega}^{-0.2} \hat{\rho}^{0.3} \\ \eta &= 2 \text{ kpc km s}^{-1} \hat{\sigma}^{0.4} \hat{\Omega}^{0.25} \hat{\rho}^{0.4} \end{aligned}$$

where
$$\sigma_0 = 30 \text{Myr}^{-1} \text{kpc}^{-2}$$
,
 $\Omega_0 = 25 \text{Gyr}^{-1}$, $\rho_0 = 1 \text{ cm}^{-3}$

Measuring dynamo tensors Non-linear quenching

Context

The galactic dynamo

MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Preliminary results

Measuring dynamo tensors Non-linear quenching

magnetic field saturation

O. Gressel

Measuring dynamo tensors Non-linear quenching

a lingering catastrophe

- Quenching scenarios:
 - (a) classic: flow quenching due to Lorentz force
 - (b) catastrophic: helicity conservation inhibits growth
 - (c) similar to scenario (b) but alleviated by small-scale helicity removal
- Test possible realisations:
 - quenching sets-in ...
 (a) ... at B ≃ B_{eq}
 (b) ... at B ≃ B_{eq}/Rm
 - (c) ... at $B \simeq B_{\rm eq} l_0/L_0$
- Suppression of wind: (c) \rightarrow (b)

正明 スポッスポッスラッムロッ

Measuring dynamo tensors Non-linear quenching

extracting quenching functions

- quenching quadratic in $eta\equiv ar{B}/B_{
 m eq}$
- magnetic Reynolds number, $Rm \equiv u_{rms}(k_f \eta)^{-1} \simeq 75-125$

scale separation ratio, $l_0/L_0 \simeq 0.1 \, \text{kpc}/1 \, \text{kpc} = 10$

Gressel, Bendre & Elstner (2013), MNRAS 429, 967

Description of disc model Preliminary results

Context

The galactic dynamo

MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Preliminary results

Description of disc model Preliminary results

the disc model

- Based on flaring HI disc Kalberla & Dedes (2008)
 - expon. + power-law density profile
 - NFW-type DM halo
 + stellar disc / bulge
 - → self-consistent rotation curve

- Goal: perform fully-dynamical MHD + MFD simulations
 - momentum equation with turbulent viscosity
 - will capture Parker / Tayler / MRI on long wavelengths

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

-20

Description of disc model Preliminary results

disc surface density

Kalberla & Dedes (2008)

Description of disc model Preliminary results

disc surface density

Kalberla & Dedes (2008)

Description of disc model Preliminary results

Context

The galactic dynamo

MF-MHD in a nutshell

2 Simulation results

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Preliminary results

Description of disc model Preliminary results

emerging dynamo mode

Dynamo solution

- initial NVF leads to transient A0, \rightarrow S0 mode
- S0+A0 produces one-sided vertical field Mao, Gaensler et al. (2010)

Description of disc model Preliminary results

model overview

Table 2. Simulation parameters and results.

model	dim	MF	NS	halo	$M_{\rm gas}$ [10 ¹⁰ M _{\odot}]	seed	parity	<i>P</i> tn [°]	Pout [°]	τ _e [Gyr]	$ \overline{\mathbf{B}}_{sat} $ [μ G]	comments
X1s-0.5	2D	•	0	0	0.57	WN	S0/A0	-31.2	-4.7	0.374	1.44	see Fig. 3
X1s	2D	•	0	0	1.14	WN	S0 ^a	-28.7	-4.6	0.503	3.75	see Figs. 4,5
X1s-1.5	2D	•	0	0	1.70	WN	S0 ^a	-32.7	-4.6	0.547	6.34	
X1s-2.0	2D	•	0	0	2.27	WN	S0	-35.8	-4.3	0.593	9.07	
X2s-halo	2D	•	0	•	1.14	WN	S0 ^a	-25.2	-4.8	0.358	4.05	
X3s-VF	2D	•	0	٥	1.14	NVF	A0→S0	-28.9	-4.5	0.539	3.75	
N1s/d-HF	3D	•	0	0	1.14	NHF	S0	-28.7	-3.2	-	3.75	
	3D	•	•	0	1.14		S0	-17.7	-2.6	-	2.52	
N1s/d-VF	3D	•	0	0	1.14	NVF, B_{ϕ}	S0	-29.0	-6.1	0.409	3.75	
	3D	•	•	۰	1.14		S0	-17.8	-2.7	0.407	2.65	see Fig. 8
N2d	3D	0 ^b	•	0	1.14	HF+VF	A0	-5.3	-1.6	-	0.82 ^c	see Fig. 6
N2d-MRI	3D	0	•	0	1.14	HF+VF	A0	-6.0	-0.5	-	4.25	see Fig. 7

^{*a*} sub-dominant A0 outside $R \simeq 10$ kpc, ^{*b*} includes η_t , and ν_t , ^{*c*} obtained outside $R \simeq 15$ kpc.

All 2D runs are axisymmetric; mean-field (MF) effects include the ones described in Sect. 2.2; runs including: INS' evolve the Navier-Stokes equation. The 'halo' dynamo is shown as a dashed line in Fig. 2. The column labelled M_{gas} gives the normalisation for the disc mass. For seed fields we use white noise (WN), net-vertical field (NVF), net-horizontal field (NHF). Pitch angles are given for the inner disc (peak value) and for the outer disc (average for R > 10 kpc) separately. Growth rates are for the magnetic field $|\vec{B}|$, during an interval for which exponential growth can be identified.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Description of disc model Preliminary results

radial pitch angle

radial fall-off in pitch angle (agrees with observations)

 \rightarrow explained conveniently by flaring disc Fletcher (2010)

O. Gressel

Description of disc model Preliminary results

saturated field profile

- radial scale length $\sim 4 \, \text{kpc}$ for saturated $\overline{\mathbf{B}}$
- outer disc essentially unmagnetised

・ロット (雪) (き) (き)

11 DQC

Description of disc model Preliminary results

MHD w/o mean-field dynamo

Description of disc model Preliminary results

MHD w/o mean-field dynamo

O. Gressel

2013-05-14 - LOFAR MKSP meeting, Sant'Antioco 23/27

Description of disc model Preliminary results

combined MHD / mean-field dynamo

- Parker modes & MRI in outer disc
 → pronounced loop structures
 undulating mode with *m* = 3
- **radial scale length** $\sim 10 \, \text{kpc}$
- inner disc dominated by m = 0

summary of results

Measuring dynamo coefficients

- 1D mean-field model matches simulations
- $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level
- Global mean-field models
 - first fully quantitative global dynamo models

 - parametrisation of small-scale effects is essential

summary of results

Measuring dynamo coefficients

- 1D mean-field model matches simulations
- $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level

Global mean-field models

- first fully quantitative global dynamo models
- dynamic momentum equation ightarrow MRI / Parker / Tayler
- parametrisation of small-scale effects is essential

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

summary of results

Measuring dynamo coefficients

- 1D mean-field model matches simulations
- $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level
- Global mean-field models
 - first fully quantitative global dynamo models
 - dynamic momentum equation → MRI / Parker / Tayler
 - parametrisation of small-scale effects is essential

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

workshop announcement

Galactic Magnetism in the Era of LOFAR and SKA: Developing Tools for Synthetic Polarization Maps

Sept. 23-27, 2013 AlbaNova, Stockholm

organising committee

- Sui Ann Mao (NRAO/UWisconsin)
- Cathy Horellou (Chalmers)
- Bryan Gaensler (Sydney)
- Andrew Fletcher (Newcastle)
- Axel Brandenburg (Nordita)
- Michael Bell (Garching)
- Rainer Beck (Bonn)

www.nordita.org/polmap2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

27/27