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What is the origin of regular
galactic magnetic fields?
primoridial field, (i.e. frozen-in fossil
record of galaxy formation)
dynamo-generated field,
(i.e. dynamically replenished)

Beck of the envelope
galactic rotation winds-up B
To ~ 27 /25kpc~ kms~! ~ 250 Myr
turbulent diffusion
74 =~ (0.5kpc)?/0.5kpckms ™! ~ 500 Myr
large observed pitch angle
strongly favours dynamo
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energy deposited by
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supernova-driven turbulence
A ® interstellar medium

highly turbulent

m energy deposited by
supernovae, CRs,
MRI, stellar winds,
protostellar jets, . ..

2050 m 2-3 SNe per century in
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m interstellar medium
highly turbulent

m energy deposited by
supernovae, CRs,
MRI, stellar winds,
protostellar jets, . ..

m 2-3 SNe per century in
our own Milky Way

= small-scale dynamo is simple (in a way...)

= but how amplify regular fields in a turbulent environment?
rotation + stratification — mean-field dynamo
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helical « effect in a single
expanding SNR

breaking the homogeneity
of the turbulence

Key mechanisms

rotation (and/or shear)
— field-line stretching

helical flow component
— avoid cancellation
due to anti-parallel field

« effect couples the
poloidal and toroidal
field components
reconnection

— restore original
field-line topology
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helical « effect in a single
expanding SNR

breaking the homogeneity
of the turbulence

Key mechanisms

rotation (and/or shear)
— field-line stretching

helical flow component
— avoid cancellation
due to anti-parallel field

« effect couples the
poloidal and toroidal
field components
reconnection

— restore original
field-line topology
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encapsulate the effect of the supernovae
model the evolution of the large-scale field

Gissinger, Fromang & Dormy (2008)
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Mean-field approach:
split into mean + fluctuation
U=U+u and B=B+b
derive mean-field equation

OB =Vx(UxB+E&—-nVxB)

turbulent EMF £ = uxb

Andrew Fletcher/Rainer Beck,
SuW / Hubble Heritage Team,
STScl/AURA
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Mean-field approach:
split into mean + fluctuation
U=U+u and B=B+b
derive mean-field equation

OB =Vx(UxB+E&—-nVxB)

turbulent EMF £ = uxb

Parametrise small-scale effects £

as a functional of U, B, f(u)

for sufficient scale separation

5,‘ = aiij — 7~],] SjklakBl

Andrew Fletcher/Rainer Beck,
SuW / Hubble Heritage Team,
STScl/AURA

9000 Lj
1
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Udo Ziegler’s NIRVANA-III

conservative (dual energy)
MHD grid code

2nd-order central scheme +
constrained transport (CT)
3rd-order Runge-Kutta
time integrator

block structured adaptive
mesh refinement (AMR)
efficiently MPI-parallel
(space-filling-curve
techniques for AMR)




Model geometry:
local patch of interstellar medium,
up to 1.6 kpc on edge (A ~10pc)
vertical stratification up to +6 kpc
sheared galactic rotation




Model geometry:
local patch of interstellar medium,
up to 1.6 kpc on edge (A ~10pc)
vertical stratification up to +6 kpc
sheared galactic rotation

Physical ingredients:
non-ideal MHD (+ heat conduction)
optically thin radiative
heating/cooling
localised thermal energy input
modelling the supernovae

Korpi, Brandenburg, Shukurov,
Tuominen & Nordlund (1999)
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Gressel, Elstner, Ziegler & Riidiger (2008), A&A 486, L35

dynamo effect
lagl, |ag| ~ 3kms™!

diamagn. pumping
Y| ~ 7kms~!
directed inward

|| = |7y| consistent
w/ SOCA results

effect of
galactic wind u,
balanced by
turb. pumping
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turb. diffusivity
~ 2kpckms™!
coherence time
T ~ 3 Myr

non-vanishing

Q x J effect

5. ~ 0.5kpckms™!
add shear

— dynamo
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Figure 4.10: Same as Fig. -
in the off-di

. but additionally including a mixed (anti-)symmetric contribution
1al elements of i (upper panels). Now the lopsided dipolar symmetry in the field
embles the features seen in the direct simulation H4 (lower panels).




dynamo effect as function of
supernovarate ¢ =o/oy
rotation frequency € = Q/
midplane density p = p/po

scaling relations:

a=2 km571 6_0.4 QO.S [)70.1 0.1 0.1
5 0
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magnetic field saturation
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O. Gressel 2013-05-14



pumping, 7, [kms™'] dynamo, agy [kms™']

diffusion, 744 [kpe kms™']

20 -

-20

kinematic
— quenched

Quenching scenarios:
(a) classic: flow quenching
due to Lorentz force
(b) catastrophic: helicity
conservation inhibits growth
(c) similar to scenario (b)
but alleviated by small-scale
helicity removal

Test possible realisations:
quenching sets-in ...
(@) ... at B~ B
(b) ... at B ~ B,y /Rm
(C) ...atB ~ BquO/LO

Suppression of wind: (c) — (b)
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quenching quadratic in 8 = B/Beq
magnetic Reynolds number, Rm = uuy (k) ~! ~ 75-125
scale separation ratio, /p/Lo ~ 0.1kpc/1 kpc = 10
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Gressel, Bendre & Elstner (2013), MNRAS 429, 967
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Based on flaring HI disc RN

Kalberla & Dedes (2008)
expon. + power-law
density profile

NFW-type DM halo
+ stellar disc / bulge
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rotation curve

200

100 -

rotation velocity vq [kms™']
HWHM [kpe]

— self-consistent

1000

rotation curve 0 5 I s 20

radius r [kpe]

Goal: perform fully-dynamical MHD + MFD simulations

momentum equation with turbulent viscosity
will capture Parker / Tayler / MRI on long wavelengths

surface density Z [10® em™]



disc surface density

Surface density (1 0'® cm‘z)
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Dynamo solution

initial NVF leads to transient A0, — SO mode
S0+AO0 produces one-sided vertical field Mao, Gaensler et al. (2010)



Description of disc model

Preliminary results

model overview

Table 2. Simulation parameters and results.

‘model dim MF NS halo Mél,s seed parity Pin Pout Te Iﬁml comments
110'Mo] 1171 Gyl kGl
Xls-0.5 2D . ° ° 0.57 WN SO/A0 -31.2 47 0374 144 seeFig.3
Xls 2D . ° ° 114 WN So0a -287 -46 0503 375 seeFigs. 45
Xls-1.5 2D . ° ° 170 WN So? -32.7 -46 0547 6.34
Xls-2.0 2D . ° ° 2.21 WN S0 -35.8 43 0593 9.07
X2s-halo 2D . o 114 WN S0 -25.2 -48 0358 4.05
X3s-VF 2D . o 114 NVF A0D—-SO  -289 -45 0539 375
3D . ° ° 114 NHF N -287 32 - 3.75
Nigfd-HF 3D . . ° 114 N -17.7 - -2.6 - 2.52
3D . ° ° 114 NVF. S0 -29.0 6.1 0409 375
Nis/d-VE 3D . . ° 114 B S0 -17.8  -2.7 0407 265 seeFig.8
Nad 3D of . o 114 HF+VF A0 -53  -16 - 0.82°  seeFig. 6
N2d-MRI 3D ° . o 114 HF+VF A0 -6.0 -05 - 425 seeFig. 7

# sub-dominant A0 outside R =~ 10 kpc, ” includes. nt.and v, € obtained outside R~ 15kpc.

All 2D runs are axisymmetric; mean-field (MF) effects include the ones described in Sect. 2.2; runs including 'NS’ evolve the Navier-Stokes equation.
The "halo” dynamo is shown as a dashed line in Fig. 2. The column labelled Mg, gives the normalisation for the disc mass. For seed fields we use white
noise (WN), net-vertical field (NVF), net-horizontal field (NHF). Pitch angles are given for the inner disc (peak value) and for the outer disc (average
for R > 10kpc) separately. Growth rates Ke for the magnetic field B, during an interval for which exponential growth can be identified.
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radial pitch angle
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= radial fall-off in pitch angle (agrees with observations)
= — explained conveniently by flaring disc Fletcher (2010)
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Going global
saturated field profile
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» radial scale length ~ 4 kpc for saturated B
= outer disc essentially unmagnetised

«4O0>» «Fr «=E)r» «EH» El= QR
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Going global
MHD w/o mean-field dynamo
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Going global
MHD w/o mean-field dynam
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= MRI with dissipation from SNe

«0>» «F» « A EH» El= QAR
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magnatc faia &, [uc)
anetc a8, [uc)

Parker modes & MRI in outer disc
— pronounced loop structures
undulating mode with m = 3
radial scale length ~ 10kpc 5
inner disc dominated by m = 0

wavenumber m

15 20

10
radius [kpc]
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Jansson & Farrar (2012)



summary of results

= Measuring dynamo coefficients

= 1D mean-field model matches simulations
= — quantitative scaling relations for sub-grid physics

Non-linear saturation

quenching functions obtained
indications for the presence of helicity constraints
suppression of wind threatens saturation level

Global mean-field models

first fully quantitative global dynamo models
dynamic momentum equation — MRI / Parker / Tayler
parametrisation of small-scale effects is essential

«4O0>» «Fr «=E)r» «EH» El= QR
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Measuring dynamo coefficients

1D mean-field model matches simulations
— quantitative scaling relations for sub-grid physics

Non-linear saturation
quenching functions obtained
indications for the presence of helicity constraints
suppression of wind threatens saturation level

Global mean-field models
first fully quantitative global dynamo models
dynamic momentum equation — MRI / Parker / Tayler
parametrisation of small-scale effects is essential
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~ Galactic Magnetism in the Era of LOFAR and SKA:
Developing Tools for Synthetic Polarization Maps
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