

Max-Planck-Institut für Astrophysik

Reconstructing the Galactic free electron density

Maksim Greiner

with Marco Selig & Torsten A. Enßlin

Outline:

1. The Physics

pulsar dispersion and free electron density

2. The Reconstruction Algorithm

dealing with uncertain distances

3. The Reconstruction

comparison with the NE2001 model

4. Summary

The Interstellar Medium

Extremely dilute matter between stars

- Average density $10^{-20} \times \text{density}$ of air

ISM – 99% gas

- Cold regions with molecular gas
- Cold & warm regions with atomic gas
- Warm regions with ionized gas
 →characterized by free electron density

The Free Electron Density n_e

Influence of electromagnetic radiation

Emission of electromagnetic radiation

Pulsars

Rapidly rotating neutron stars

- Magnetic moment not aligned with rotational axis
 - \rightarrow induces radiation

Pulsars

Rapidly rotating neutron stars

- Magnetic moment not aligned with rotational axis
 - \rightarrow induces radiation
- Emitted radiation travels through ISM
 - Many frequencies emitted at the same time
 - Dispersion ν -dependent velocity
 - Different arrival time
 - \rightarrow dispersion measure DM

Dispersion Measure

The radiation dispersion time

$$t = k_{\rm DM} \times \frac{\rm DM}{\nu^2}$$

is proportional to the line integral over the free electron density

$$\mathrm{DM} = \int_0^d n_e \, \mathrm{d}r$$

Prior Information

 Densities are positive definite. The free electron density can vary over several orders of magnitude and correlations are important.

Prior Information

 Densities are positive definite. The free electron density can vary over several orders of magnitude and correlations are important.

$$\implies \text{ log-normal prior} \\ n_e = e^s \qquad s \hookleftarrow \mathcal{G}(s,S), \text{ but} \qquad S \text{ unknown.}$$

Prior Information

 Densities are positive definite. The free electron density can vary over several orders of magnitude and correlations are important.

$$\implies$$
 log-normal prior
 $n_e = e^s \qquad s \leftrightarrow \mathcal{G}(s,S)$, but $\qquad S$ unknown.

2. We have (a priori) no distinguished position or direction.

Prior Information

 Densities are positive definite. The free electron density can vary over several orders of magnitude and correlations are important.

$$\implies \text{ log-normal prior}$$

$$n_e = e^s \qquad s \hookleftarrow \mathcal{G}(s,S), \text{ but} \qquad S \text{ unknown.}$$

2. We have (a priori) no distinguished position or direction.

 $S(\vec{x}, \vec{y}) = S(|\vec{x} - \vec{y}|)$ statistical homogeneity & isotropy

$$\implies S$$
 fully described by power spectrum $p(k)$, but $p(k)$ unknown.

Uncertain Pulsar Distances

Upper limit of the response integral unknown

$$d = Rn_e + \eta \qquad (Rn_e)_i = \int_{\text{earth}}^{\text{pulsar } i} n_e \, \mathrm{d}r$$

Likelihood in the form of

$$\mathcal{P}(d \mid s \quad) = \mathcal{G}(d - Rn_e, N)$$

only valid for known distances.

Uncertain Pulsar Distances

Upper limit of the response integral unknown

$$d = Rn_e + \eta \qquad (Rn_e)_i = \int_{earth}^{pulsar i} n_e \, \mathrm{d}r$$

Likelihood in the form of

$$\mathcal{P}(d \mid s, a) = \mathcal{G}(d - Rn_e, N)$$

only valid for known distances (a_i being the distance of pulsar i).

Actual likelihood is the distance marginalized likelihood

$$\mathcal{P}(d \mid s) = \int \mathcal{D}a \ \mathcal{P}(d \mid s, a) \ \mathcal{P}(a)$$

... cannot be solved analytically & computationally too expensive.

Uncertain Pulsar Distances

Upper limit of the response integral unknown

$$d = Rn_e + \eta \qquad (Rn_e)_i = \int_{\text{earth}}^{\text{pulsar } i} n_e \, \mathrm{d}r$$

Solution:

Find effective response $\,\tilde{R}$ and effective noise covariance \tilde{N} to approximate

$$\mathcal{P}(d \mid s) \approx \mathcal{G}(d - \tilde{R}n_e, \tilde{N})$$

Uncertain Pulsar Distances

Pulsar distances a_i uncertain

$$(Rn_e)_i = \int_0^\infty \mathrm{d}r \ n_e \ \theta(a_i - r)$$

Effective response

$$(\tilde{R}n_e)_i = \int_0^\infty \mathrm{d}r \ n_e \ P(r < a_i)$$

Uncertain Pulsar Distances

Uncertain Pulsar Distances

Effective noise covariance $ilde{N}$ depends on the local density around the pulsar.

Reconstruction Close to the Galactic Plane

Comparison with NE2001

Logarithmic plot of the free electron density in the Galactic plane

Comparison with NE2001

Logarithmic plot of the free electron density in the Galactic plane

spiral arms according to NE2001

Vertical Drop-off

Vertical drop-off of average density

fitted to
$$n_e \propto \exp\left(-\frac{|z|}{H}\right)$$

yields
$$H \approx (1.06 \pm 0.53) \, \mathrm{kpc}$$

fitted to
$$n_e \propto {
m sech}^2 \left(rac{|z|}{H}
ight)$$

yields $H \approx (1.08 \pm 0.44) \text{ kpc}$

Vertical Drop-off

Vertical drop-off of average density

Summary

Reconstruction of the Galactic free electron density possible.

Pulsar dispersion measures are an excellent probe if complemented by an independent distance estimate.

Uncertainty of distance estimates can be dealt with.

A reconstruction from 68 pulsars already shows significant structure.

Vertical drop-off of the free electron density is in agreement with literature.

References

Cordes & Lazio (2002)

Gaensler et al. (2008)

Schnitzeler (2012)

Selig et al. (2013)

Information field theory http://www.mpa-garching.mpg.de/ift/

Numerical calculations done with NIFTY http://www.mpa-garching.mpg.de/ift/nifty/

Uncertainty of the Logarithmic Density

2kpc

0.1