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Cosmic rays & B in galaxy clusters

Diffuse synchrotron emission is detected in a fraction of galaxy clusters.
This demonstrate 5.the presence of (at least) CRe and B.

Unpolarised, follow the X-ray brightness
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CR+B : important not only for NT-physics ...

Thermal conduction, kin. Viscosity, "collisionality” in the ICM
(Schekochihin et al 05,08, Lazarian & Brunetti 11, Brunetti & Lazarian 11)

Diffusion and transport of metals in the ICM
(Voigt & Fabian 04, Rebusco et al. 05, Cho et al. 06, Vazza et al 10..)

Impact on clusters dynamics, scalings and evolution
(Ryu et al 04, Colafrancesco et al., ..)

Heating of the ICM and “cooling flow” problem
(Fujita, Matsumoto, Weda 04, Guo & Oh 08, ..)

Diffusion and scattering of HE & UHECR in the Universe
(Sigl et al. 05; Dolag et al. 05, ..)




Important (open) questions

- Are CR and B common or not ?
- Energy budget of B and CRp,e ?
- Impact on the physics of the ICM

- Origin of CR and B




Observations of background (or

4 e TS in clusters) polarised radio
saellice L QU S sources in a clusters sample:
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Murgia et al 2004
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RM depends on the combination of

magnetic field strength & topology (and its
coherent scales) with electron density along
the line of sight, implying Strong degeneracy

in Galaxy Clusters

B=few 6
Ac = few-50 kpc

RM probe turbulent motions
in the ICM

oy = (RM?) = 8122A, / (neBy)*dl .
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Coma Cluster: high energy NT
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Controversial... but (at least!) lower limits on B

Ackermann et al 2010
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Void regions - magnetic fields
Lack of extended y-ray emission around AGNs

> B>~ 10166
CMB
hoton
photon from . P Y s Secondary
extra-galactic & inverse- 'Y
° source Compton
NS Y
strong y-ray \
source such e
as AGNs pair extended
production y-ray around
the source
no observation of extended y-ray around sources
-> evidence of magnetic defection along the path
from the source to the observer Neronov 10

B >~ 10-1¢ G in void regions! Aleksic et al 10

Combining constraints from the lack

of gamma-ray halos (Neronov et al
10, Aleksic et al 10), from RMs of

QSO (Blasi et al 99), and from
isotropy of the CMB (Barrow eft al
97) the magnetic field in "voids” is in
the range 10-7-1 nG.
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Magnetic fields in the LSS of the universe

Seed magnetic fields
Origin of seeds for comic magnetic fields is uncertain.
some suggestions:
1. generation in the early universe

e.g.) during the electroweak phase transition (t~10-12sec)?

during the quark-hadron transition (+~10-sec)?
2. generation before cluster formation
e.g.) plasma processes such as thermal fluctuations

or at shocks
‘ 3. magnetic fields from the first stars and active galaxies

-> expected to be very weak

Amplification through turbulence dynamo ?

Rees 04
Gaensler et al 04
Biermann battery Battery + dynamo
in Pop Il stars in first AGNs (z = 57)
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Biermann battery Battery + dynamo

in Pop Ill stars in first AGNs (z = 57)
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Origin of LS Magnetic Fields

Overall picture for cosmological shocks

large-scale structure formation

other sources, such as AGNs
magnetic fields

collapse
& flow motions

shock generation of heat
WU fresh acc. & re-acc. of CRs

cosmological shocks ‘ genera. of magnetic fields

the main channel to flow th
gravitational energy to the
intergalactic medium

cascade into turbulence
hock

— [

turbulent amp. of maqg. fields
turbulent acceleration of CRs

Dolag et al 05, Subramanian et al 06, Ryu et al 08, ...



Brueggen et al 05
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Shear flows and turbulent/kinetic dynamos
amplify the magnetic field in the clusters
internal regions. The amplification process
increases B energy by 4 orders of magnhitude
(with respect to matter compression).




Synchrotron from LSS combined info on CR(e) and B

XBACs (NVSS)

Log(Ly) [erg/s]

eBCS+REFLEX
(GMRT RH survey)

radio halos

Contrary to magnetic fields, Mpc-scale
synchrotron emission is not (very)

NV £ - oy 1 common in galaxy clusters.
55 GataiCHNCEEE s . | 999) Present data suggest that the fraction

and deep GMRT observations. of clusters with radio halos increases

44.9 with clusters mass.
IRERiagtciss =~ 1/3 Lack of sensitivity of present radiotel

for L <10%erg/s =~ 1/10 does not allow to detect halos in less
massive (sub-Coma..) clusters and to

(Venturi et al. 2007, 2008, Cassano et al.2008):  firmly address their evolution with z.




Synchrotron from LSS : combined info on CR(e) and B

Cassano.et al 08
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Contrary to magnetic fields, Mpc-scale
synchrotron emission is not (very)

NVSS data (from Giovannini et al. 1999) common in galaxy clusters.

: Present data suggest that the fraction
and deep GMRT observations. of clusters with radio halos increases

o with clusters mass.
for L>10*"erg/s  ~1/3 Lack of sensitivity of present radiotel
does not allow to detect halos in less
<1044.9 Az
LRe L Gk 1/10 massive (sub-Coma..) clusters and to

(Venturi et al. 2007, 2008, Cassano et al.2008):  firmly address their evolution with z.
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Cluster-cluster mergers are the most
energetic events in the present Universe
(10%%erg/Gyr). They can drive mechanisms

for particle acceleration (shocks, turb..) |

reaccelerates fossil CRe*
CRp and secondaries CRe*
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Radiation from CR in clusters (Brunetti & Lazarian 11)
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Observations in different bands
provide constraints on different

processes ... Gamma rays from decay
of m° from CRp-p collisions




Probing CRe acceleration models

TURBULENCE is the potential source of CRparticle
reacceleration in clusters environments, in this case
high frequency radio observations can detect only the
“tip-of-the-iceberg”, while the majority of Mpc-scale
radio sources should glow up at lower radio frequencies.
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Brunetti +al 2008, Nature 455, 944
GMRT 240 MHz _____Abell 521
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ultra-steep spectrum have been
discovered so far, they fill the
transition region in the Psyn-Px IR A
diagram as expected by the | | ‘L
reacceleration model . Y
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A2256:Where is the steep spectrum halo?
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LOFAR observations on A2256, |115-165 MHz
4 MHz @135 MHz,rms 5 m)y, 31*19 arcsec
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How many radio halos can

be discovered ?2?

Results from MonteCarlo calculations
including (turbulence) reaccelerated and

secondary electrons
(Cassano,GB, Johnston-Hollit, Norris, Rottgering, Trasatti 12)

EMU ~ 200 RHs |
LOFAR =~ 1000 RHs;
SKA ~ 1000(?) RHs]

0.2 0.4 0.6
z

Constrain B amplification and
CR acceleration up to z=1,
with impact on Cosmology ...




ogical Shocks

atural consequence of the hierarchical
cess of LSS formation




Syn diffuse emission beyond clusters

Vazza et al 10

BCR mod

Van Weeren et al 10, Science




Syn diffuse emission beyond clusters

Vazza et al 10 ellister

Kronberg et al 06 gy

' Depending on plasma
physics and B amplification
. mechanisms, observations
. B - at GHz-frequencies with
e & ° ) sensitivity 10-30 times
. _ better than present should
- be able to probe a totally
unexplored territory ..

Territory for the SKA

DECLINATION (J2000)

RIGHT ASCENSION (J2000)




Leap forward in RM-science with SKA

Declination

02:00.0 13:00:00.0 58:00.0 12:56:00.0
Right ascension

“State of the Art” results are based on few (3-8)
backgroud sources/line of sight.

Variance and assumptions (geometry) are
major problems for a reliable measure of B and
its spatial profile.

Limitations are due to the poor sensitivity of
radiotel... few sources “available” per deg2
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Leap forward in RM-science with SKA

Bonafed et al 10 comam
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The SKA Magnetism Key Science Project plans to observe large regions in the sky

with a sensitivity (6Hz) 0.5-1 pJy flux density allowing for 1500 RMs deg? .
In a nearby cluster field there will be up o 100-1000 background sources/lines of

sight to sample ... compared to a few in present studies .
This will allow firm measurements of magnetic field in clusters, its evolution and

connection with clusters dynamics.




'S and Deyond e

—5.44
The SKA sensitivity (RMs) will be

10-100 times better than present
radiotelescopes.

F2
£
&
~
£
o2
L

6.5

BB SKA will explore regions where
B <n.B>=0.1-0.01+<n,B>_(clusters cores)
Krause et al
Bz - redshift 0 —0.31 1.09
o A 5 —2.84 —1.60
20 . g -
s 8 5.36§_ s [-428
20 - o W-7.88 - Yy
: 2 o
-40 ~10.4 ~9.66
-40 -20 0 20 40 40 20 0 20 40
—-12.9 —12 3
X / Mpc/h X / Mpc/h ‘




Conclusions

Non-thermal components in GC are probed by radio observations
Non-thermal components may strongly affect the physics of the ICM

Origin of B and CR in GC is still a open question, yet a promising
theoretical picture suggests a connection between the acceleration
of CR (turbulence, shocks, secondaries), the amplification of seed B
(turbulent dynamos / shocks) and the formation of GC (mergers)

LOFAR and SKA-pathfinders will shortly start testing this theoretical picture.

SKA will allow firm measurements of B in galaxy clusters and its evolution




