

Science with The Square Kilometre Array

Joseph Lazio Project Scientist, SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology

© 2012 California Institute of Technology. Government sponsorship acknowledged.

- from Italy.
- My father's family is
 My mother's family is from Ireland.

Which team should I support?

Square Kilometre Array

Global Radio Wavelength Observatory

 Originally: "Hydrogen telescope"

Detect H I 21-cm emission from Milky Way-like galaxy at $z \sim 1$

- SKA science much broader
 - ⇒ Multi-wavelength, multimessenger
- On-going technical development
- International involvement

SKA Key Science

International working group

 Strong-field Tests of Gravity with Pulsars and Black Holes

Phase 1 headline science

Galaxy Evolution, Cosmology, & Dark Energy

Phase 1 "H I through cosmic time" headline science

Emerging from the Dark Ages and the Epoch of Reionization

Phase 1 "H I through cosmic time" headline science

- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

With design philosophy of *Exploration of the Unknown*

Science with the Square Kilometre Array (2004, eds. Carilli & Rawlings, New Astron. Rev., **48**)

21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- •Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- •Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Evolution of the Universe

(Pritchard & Loeb 2008)

Evolution of the Universe Epoch of Reionization

SKA objective: Image the IGM transition in the H I (21-cm) line

Furlanetto et al.; Gnedin

Galaxy Assembly Stars and Gas

- Gas content and dynamics becoming critical part of simulations.
- Astronomy is an *observational* science.
- Need observations of gas content —over cosmic time—to understand galaxy formation!

Eris simulation (Guedes et al.) NGC 6946 (T. Oosterloo)

Keres et al.

15 kpc

Galaxy Assembly The Role of Mergers

(Moster et al. arXiv:1104.0246)

- Mergers are recognized as important aspect of galaxy evolution and formation
- Gas can be sensitive tracer of interactions, long after original event took place

E.g., Holwerda et al. with THINGS

Galaxy Evolution Accretion vs. Fusion

Radio wavelengths important to understand balance between AGN and star formation (SF) for galaxy luminosity

- Distinguish between AGN and SF
- Track over cosmic time
- Continuum observations
 useful

Requires telescope to be designed smartly

Galaxy Assembly H I Absorption

Don't forget about H I absorption!

- Powerful tool
 - E.g., pristine gas
- Already detected to z ~ 3.4
 - Searched for z ~ 5
 - Well beyond what even Phase 2 will do in emission
- Only strong argument for continuous frequency coverage

Fumagalli et al., optical H I absorption, (2011, Science)

Astrobiology at Long Wavelengths

$\lambda > 1 \text{ cm}$

- Not affected by dust
- Complex molecules have transitions at longer wavelengths
- "Waterhole" (1.4-1.7 GHz)
- Magnetically-generated emissions from extrasolar planets

Complex organic molecules detected at radio wavelengths

J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- •Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- •Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Did Einstein Have the Last Word on Gravity?

of periastron time (s) 51-01-01-

Cumulative shift

-25

1980 1985 1990

PSR J0737-3039

Relativistic binaries probe

- 1. Equivalence principle
- 2. Strong-field tests of gravity
- Neutron star-neutron star and neutron star-white dwarf binaries known

? Black hole-neutron star binaries?

Burgay et al., Lyne et al., Kramer et al.

SKA: Gravitational Wave Detector

Test masses on lever arm

- ~ nHz → Pulsar Timing Array = freely-falling millisecond pulsars
- ~ µHz → freely-falling masses in spacecraft
- ~ Hz → LIGO, VIRGO = suspended mirrors

Pulsar timing arrays starting to provide results from ensemble of pulsars

- EPTA (van Haastern et al., *above*)
- PPTA (Yardley et al.)
- NANOGrav (Demorest et al.)

Origin & Evolution of Cosmic Magnetic

- Magnetic fields are fundamental, but poorly constrained
 - Affects galaxy, cluster evolution?
 - Affects propagation of cosmic rays in ISM and IGM
- All-sky rotation measure surveys provide B fields along lines of sight

Magnetic Fields in Clusters of Galaxies

- Clusters can be used to track magnetic field growth over cosmic time
- Also
 - Laboratory for understanding particle acceleration
 - Growth of large scale structure

Kale et al.

ld's largest radio telescope

Magnetic Fields and Cosmic Rays

- Are ultra-high energy cosmic rays (UHECRs) produced in nearby AGN?
- Galactic magnetic field influences cosmic ray propagation
- Different models of Galactic field imply different arrival directions
 - Axi-symmetric vs. bisymmetric?
 - Field directions above and below the Galactic plane
 - Effect of turbulence?

Takami, arXiv:1104.0278

Cosmology and Gravity

 $G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} / c^4$

Origin and Fate of the Universe

- Era of "precision cosmology" ... or precision ignorance
- Need to sample a substantial volume of the Universe
- Volume ~ $D^2 \Delta D \Omega$
 - D distance; Ω solid angle
 - Surveying to larger D is difficult
 need larger telescopes
 "square kilometre" of SKA
 - Surveying larger sky areas Ω
 "just" requires more observing time

Composition of the Universe

Cosmology and Sky Surveys

- Image the sky, locating galaxies
 Analysis of locations compared with cosmological models to constrain parameters
- Two broad classes of surveys
 - Continuum: e.g., NVSS, FIRST, ASKAP/EMU, WSRT/APERTIF/ WODAN
 - Spectroscopic: SDSS, Arecibo ALFALFA, ASKAP/WALLABY, SKA H I survey Spectroscopic surveys locate in 3-D

Spectroscopic surveys locate in **3-D space!** very powerful

Ultimate goal: spectroscopic survey of 1 billion galaxies

Cosmology and Gravity

Detection of weak lensing (E modes) from FIRST (Chang et al.)

Radio observations should have fewer (different) systematics

21st Century Astrophysics

Fundamental Forces and Particles

- Gravity
- Magnetism
- Strong force

Origins

- Galaxies and the Universe
- Stars, Planets, and Life

"The Universe is patiently waiting for our wits to grow sharper."

Photon frequency / wavelength / energy

Time

Polarization

Sensitivity

Field of View

Angular Resolution

The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?
- Microquasars
- Tidal Disruption Events

- GRBs (γ-ray loud; γ-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Scintillation
- GW counterparts
- UHECRs
- ETI
- Exploding black holes
- ???

Rotating Radio Transients (RRATS)

Pulsating Brown Dwarfs

21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- •Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- •Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

SKA Science

Major Surveys

- Cosmological surveys, both continuum and H I
- Pulsar finding
- Polarization for RM grid
- SETI
- Time domain

• ...

E.g., 3C, NVSS, FIRST, SUMSS, HIPASS, ALFALFA, HTRU, P-ALFA, GBNCC, ...

Targeted Observations

- Galaxy evolution, both deep H I field(s) and continuum field(s)
- Fundamental physics via high precision pulsar timing
- Proto-planetary disks
- Magnetic field evolution via deep polarization field(s)
- Triggered observations of transients
- ...
- E.g., PTAs, THINGS, JVLA Deep H I field, JVLA Deep Polarization field, ATCA observations, VLBI observations, ...

Multi-wavelength Astronomy

Surveys

• RXTE

• Chandra, XMM-Newton

Targeted

- Pan-STARRS, SkyMapper, LSST, …
- E-ELT, TMT, GMT, JWST

• CCAT

• ALMA

SKA1_Mid

SKA1_Survey

SKA Pathfinding

program

of experience

SKA is ultimate goal, though long-term

Precursors and many pathfinders in

Learn lessons from the Precursors.

and pathfinders across the full range

Hardware, (firmware), software, data

processing, operational modes, ...

existence or under construction

Square Kilometre Array

Global Radio Wavelength Observatory

 Originally: "Hydrogen telescope"

Detect H I 21-cm emission from Milky Way-like galaxy at $z \sim 1$

- SKA science much broader
 - ⇒ Multi-wavelength, multimessenger
- On-going technical development
- International involvement

