Cosmology with Gamma-Ray Bursts:
status and perspectives
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Why looking for more cosmological probes ?

1 different distribution in redshift -> different sensitivity to different
cosmological parameters

Supernova Cosmology Project
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Recent results from SNLS (231 SNe la at 0.15 <z < 1.1, Guy et al. 2010) compared
to those of Astier et al. 2006 (44 low redshift SNe along with the 71 SNe from the
SNLS first year sample)



1 Each cosmological probe is
characterized by possible systematics

1 e.g SN la:

> different explosion mechanism and
progenitor systems ? May depend on z ?

» light curve shape correction for the
luminosity normalisation may depend on z

» signatures of evolution in the colours
» correction for dust extinction
» anomalous luminosity-color relation

» contaminations of the Hubble Diagram by
no-standard SNe-la and/or bright SNe-Ibc
(e.g. HNe)
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Supernova Cosmology Project
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Are GRB standard candles ?

1 all GRBs with measured redshift (~250, including a few short GRBs) lie at

cosmological distances (z = 0.033 — ~9.4) (except for the peculiar
GRB980425, z=0.0085)

1 isotropic luminosities and radiated energy are huge and span several
orders of magnitude: GRB are not standard candles (unfortunately)
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1 jet angles, derived from break time of optical afterglow light curve by
assuming standard scenario, are of the order of few degrees

[ the collimation-corrected radiated energy spans the range ~5x10%° — 5x10°2
erg-> more clustered but still not standard
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0 GRB have huge luminosity, a redshift
distribution extending far beyond SN la

1 high energy emission -> no extinction
problems
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O GRB have huge luminosity, a redshift

distribution extending far beyond SN la

1 high energy emission -> no extinction

problems

 potentially powerful cosmological
sources but need to investigate their
properties to find ways to standardize

them (if possible)
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The Ep,i — Eiso correlation

» GRB spectra typically described by the empirical Band function with parameters
o= low-energy index, 3= high-energy index, E,=break energy

» E, = Eyx (2 + o) = observed peak energy of the vFv spectrum

» measured spectrum + measured redshift -> intrinsic peak enery and radiated
energy
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» ~260 GRBs with measured redshift, about 50% have measured spectra

» both Ep, i and Eiso span several orders of magnitude and a distribution which can be
described by a Gaussian plus a low — energy tail (“intrinsic” XRFs and sub-energetic
events)
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» Amati et al. (A&A 2002): significant correlation between Ep,i and Eiso found
based on a small sample of BeppoSAX GRBs with known redshift
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> Ep,i — Eiso correlation for GRBs with known redshift confirmed and
extended by measurements of ALL other GRB detectors with spectral
capabilities

130 long GRBs as of Sept. 2011
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> Swift: reduction of selection effects in redshift

»>Ep,i of Swift GRBs measured by Konus-WIND, Suzaku/WAM, Fermi/GBM and BAT
(values provided by the Swift/BAT team (GCNs or Sakamoto et al. 2008).

Swift GRBs
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[ Fermi: unprecedentred broad-band coverage of prompt emission (~10 keV -
GeV) - reduction of biases in measurement of Ep

dWhen computing Ep,i and Eiso based on the fit with Band function (unless CPL
significantly better) all Fermi/GBM long GRBs with known z are fully consistent with Ep,i
— Eiso correlation as determined with previous / other experiments, both when

considering preliminary fits (GCNs) or refined analysis (e.g., Nava et al. 2011)

10000 Elo Long GRIBS I I I ) .-__.: 10000 I T TTTTTI TT T T =TT T TTTT T .,.":
[ ® Fermi/GBM long GRBs % ;
~ A Fermi GBM+LAT GRBs 224 o h ¥
1000 e [
- ST 1000 |
Ep.i A ] . C
(keV) S
100 ERERTY
1
T w” [
log .~ E 10
E ! ! ! ! ! 3 1E-3 0.01 0.1 1 10 100 1000
10* 10°° 10 10°% 10°® 10 E /10" (erg)
Eiso (erg) iso

Amati 2012 Zhang et al. 2012



> the correlation holds also when substituting Eiso with Liso (e.g., Lamb et al. 2004) or
Lpeak,iso (Yonetoku et al. 2004, Ghirlanda et al., 2005)

> this is expected because Liso and Lpeak,iso are strongly correlated with Eiso

» w/r to Eiso, Liso and Lp,iso are more difficult to estimate and subject to larger
uncertainties
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» the Ep,i- Liso correlation holds also within a good fraction of GRBs (Liang et al.
2004, Firmani et al. 2008, Frontera et al. 2012, Ghirlanda et al. 2009): robust
evidence for a physical origin and clues to explanation
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1 No evidence of evolution of index and normalization of the Ep,i — Eiso
correlation with redshift
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» strong correlation but significant dispersion of the data around the best-fit power-
law; the distribution of the residuals can be fit with a Gaussian with o(logEp,i) ~ 0.2

» the “extra-statistical scatter” of the data can be quantified by performing a fit whith
a max likelihood method (D’Agostini 2005) which accounts for sample variance and
the uncertainties on both X and Y auantities
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1
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» with this method Amati et al. (2008, 2009) found an extrinsic scatter
o,+(logEp,i) ~ 0.18 and index and normalization t ~0.5 and ~100, respectively
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“Standardizing” GRB with Ep,i-brightness correlations

1 2004: evidence that by substituting
Eiso with the collimation corrected
energy Ey the logarithmic dispersion of
the correlation decreases significantly
and is low enough to allow its use to

standardize GRB (Ghirlanda et al., Dai
et al, and many)
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4 BUT...

» the Ep-Ey correlation is model dependent: slope depends on the assumptions on
the circum-burst environment density profile (ISM or wind)

» addition of a third observable introduces further uncertainties (difficulties in
measuring t_break, chromatic breaks, model assumptions, subjective choice of the
energy band in which compute T0.45, inhomogeneity on z of T0.45) and substantially
reduces the number of GRB that can be used (e.g., #Ep,i — Ey ~ 72 #Ep,i — Eiso )
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> lack of jet breaks in several Swift X-ray afterglow light curves, in some cases,
evidence of achromatic break

» challenging evidences for Jet interpretation of break in afterglow light curves or
due to present inadequate sampling of optical light curves w/r to X-ray ones and
to lack of satisfactory modeling of jets ?
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 Atight correlation between Ep,i, Lpeak,iso and time scale T, ,; was also
claimed, based on still small number of events and proposed for standardizing
GRBs (Firmani et al. 2006 and others)
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... but Rossi et al. 2008 and Schaefer et al. 2008 , based on BeppoSAX and
Swift GRBs, showed that the dispersion of the Lp-Ep-T, 45 correlation is
significantly higher than thought before and that the Ep,i-Lp,iso-T0.45 correlation
my be equivalent to the Ep,i-Eiso correlation
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 Ep - “intensity” (or “spectrum-energy”) correlations

Eiso<->Liso Ep,i — Eiso Eiso<->Lp,iso

Ep,i - Liso “Amati” 02 Ep,i - Lp,iso
04 “Yonetoku04

tb,opt + jet model

Ep,i— Ey Ep,i — Eiso-tb Ep,i - Lp,iso-T0.45
“Ghirlanda” 04 “‘Liang-Zhang” 05 “Firmani” 06



1 Eiso is the GRB brightness indicator with less systematic
uncertainties

 Lp,iso is affected by the lack of or poor knowledge of spectral shape of
the peak emission (the time average spectrum is often used) and by the
subjective choice and inhomogeneity in z of the peak time scale

1 addition of a third observable introduces further uncertainties
(difficulties in measuring t_break, chromatic breaks, model assumptions,
subjective choice of the energy band in which compute T, ,5, inhomogeneity
on z of T, ,5) and substantially reduces the number of GRB that can be used
(e.9., #E,; - E, ~ 7a#E ;- Eig )

1 recent evidences that dispersion of E i-L ;T 45 correlation is

comparable to that of E; - E;;, and evidences of outliers / higher
dispersion of the E -E, and E -E-t, correlations



] Amati et al. (2008): let’s make a step backward and focus on the
Ep,i — Eiso correlation

Eiso<->Liso Ep,i — Eiso Eiso<->Lp,iso
Ep,i - Liso “Amati” 02 Ep,i - Lp,iso
04 “Yonetoku”04

tb,opt + jet model

Ep,i— Ey Ep,i — Eiso-tb Ep,i - Lp,iso-T0.45
“Ghirlanda” 04 “‘Liang-Zhang” 05 “Firmani” 06




] Amati et al. (2008): let’s make a step backward and focus on the
Ep,i — Eiso correlation

Eiso<->Liso Ep,i — Eiso Eiso<->Lp,iso

Amat? 02 D

tb,opt + jet model 10.45




L does the extrinsic scatter of the E ;-E,, correlation vary with the

cosmological parameters used to compute E.?
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[ afraction of the extrinsic scatter of the E ;-E,, correlation is indeed

due to the cosmological parameters used to compute E;_,

1 Evidence, independent on SN la or other cosmological probes, that, if
we are in a flat ACDM universe , Q,, is lower than 1
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» By using a maximum likelihood method the extrinsic scatter can be
parametrized and quantified (e.g., Reichart 2001, D’Agostini 2005)
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» analysis of the most updated sample of 137 GRBs shows significant
improvements w/r to the sample of 70 GRBs of Amati et al. (2008)

> this evidence supports the reliability and perspectives of the use of the
Ep,i — Eiso correlation for the estimate of cosmological parameters

68% 90%

Q2m (flat universe)
70 GRBs (Amati+ 08) 0.04 -0.43 0.02 - 0.71

137 GRBs (Amati+ 12) 0.06 - 0.34 0.03 - 0.54
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Perspectives

1 Expected significant enlargement of the sample in a few years

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 15-20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

» future GRB experiments (e.g., SVOM) and more investigations (physics, methods,
calibration) will improve the significance and reliability of the results and allow to go
beyond SN la cosmology (e.g. investigation of dark energy)

& -
s~ 1156 SN Ia
//f 1/
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1 Calibrating the Ep,i — Eiso correlation with SN la

» Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008,
Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are
investigating the calibration of the Ep,i - Eiso correlation at z < 1.7 by using the
luminosity distance — redshift relation derived for SN la

» The aim is to extend the SN la Hubble diagram up to redshift where the luminosity
distance is more sensitive to dark energy properties and evolution

» Drawback: with this method GRB are no more an indipendent cosmological probe

® GRB data (z<1.755)

B GRB data (1.755<z<5.6)
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 Investigating correlations
involving afterglow properties

1 (observational gap between

“prompt” and “afterglow emission” will

be filled by Swift in > 2004)
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> A correlation between the time, Ta, and the luminosity, Lx, of the end of the
“plateau phase” in GRB X-ray afterglows is being investigated (Dainotti+ 2008,2010)

» Athree-parameters correlation between Ep,i, Eiso and Ex,iso has been recently

reported (Margultti et al. 2012, Bernardini et al. 2012)

> If confirmed and refined by further analysis, these correlations may be
complementary to the Ep,i — intensity correlation for standardizing GRBs
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The SKA contribution
1 Radio properties of GRBs

> In the “Swift era”, radio afterglow emission
Is being detected for about 30%
accurately (< a few arcmin) localized
GRBs (~93% in X-rays, ~75% in optical/
NIR)

» Most detections by VLA / EVLA (Frail et
al, Chandra et al.); several detections also SN, - ===
by WSRT, ATCA, GMRT; a few by VLBA. FloxDensty (43

» The canonical long-duration GRB radio
light curve at 8.5 GHz peaks at three to
six days in the source rest frame, with a

median peak luminosity of 103" erg s™' Hz
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] Relevance of radio observations of GRBs

» Scintillation: fundamental probe of ultra-relativistic expansion of GRB sources

> Test of afterglow models unbiased, w/r, e.g., to optical observations (dust
extinction, contamination by SN and host galaxy light
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(1 Relevance of radio observations of GRBs

» Scintillation: fundamental probe of ultra-relativistic expansion of GRB sources

> Test of afterglow models unbiased, wir, e.g., to optical observations (dust
extinction, contamination by SN and host galaxy light)

» Properties of circum-burst environment

» Late time non relativistic phase expansion (LC and SED): afterglow physics and
determination of the blast-wave energy independent of the initial jet collimation

» Statistics of orphan afterglows: inference on maximum jet opening angle
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1 Relevance of radio observations for GRB cosmology

» Scintillation: fundamental probe of ultra-relativistic expansion of GRB sources

» Test of afterglow models unbiased, w/r, e.g., to optical observations (dust
extinction, contamination by SN and host galaxy light)

» Properties of circum-burst environment

» Late time non relativistic expansion phase (LC and SED): afterglow physics and
determination of the blast-wave energy independent of the initial jet collimation

» Statistics of orphan afterglows: inference on maximum jet opening angle
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1 Relevance of radio observations for GRB cosmology

» Scintillation: fundamental probe of ultra-relativistic expansion of GRB sources

» Test of afterglow models unbiased, w/r, e.g., to optical observations (dust
extinction, contamination by SN and host galaxy light)

» Properties of circum-burst environment

» Late time non relativistic expansion phase (LC and SED): afterglow physics and
determination of the blast-wave energy independent of the initial jet collimation

» Statistics of orphan afterglows: inference on maximum jet opening angle
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] SKA for GRBs

» High sensitivity + high angular resolution + short reaction time + broad band:
measurement of GRB source size and expansion velocity through ISM scintillation;
accurate location of GRBs in host galaxies; early radio afterglow: physics (reverse
shock, transition from optically thick to optically thin synchrotron emission, ...);
kinetic energy and jet opening angle from SED fitting; host galaxy radio emission

» High sensitivity: increased number and accuracy of GRBs radio calorimetry;
detection of very high z GRBs (up to z 10 ?); study of SFR up to very high z;
nearby (z <1 ) low-luminosity GRBs and GRB/SNe;

» Broad FOV: significant number of orphan afterglows -> constraints on distribution
of GRB jet opening angles and, hence, of energy budget
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1 SKA for cosmology with GRBs

» High sensitivity + high angular resolution + short reaction time + broad band:
measurement of GRB source size and expansion velocity through ISM scintillation;
accurate location of GRBs in host galaxies; early radio afterglow: physics (reverse
shock, transition from optically thick to optically thin synchrotron emission, ...);
kinetic energy and jet opening angle from SED (X, opt. , IR, radio) fitting;

» High sensitivity: increased number and accuracy of GRBs radio calorimetry;
detection of very high z GRBs (up to z 10 ?); study of SFR up to very high z;
nearby (z <1 ) low-luminosity GRBs and GRB/SNe;

» Broad FOV: significant number of orphan afterglows -> constraints on
distribution of GRB jet opening angles and, hence, of energy budget
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Conclusions and perspectives

» Given their huge radiated energies and redshift distribution extending from
~ 0.1 up to > 9, GRBs are potentially a very powerful cosmological probe,
complementary to other probes (e.g., SN Ia, clusters, BAQO)

» The Ep,i — Eiso correlation is one of the most robust (no firm evidence of
significant selection / instrumental effects) and intriguing properties of GRBs and
a promising tool for cosmological parameters

» Analysis in the last years (>2008) provide already evidence, independent on ,
e.g., SN la, that if we live in a flat ACDM universe, Qmis <1 at>99.9% c.l.
(%2 minimizes at @m ~ 0.25, consistent with “standard” cosmology)

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 15-20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

» future GRB experiments (e.g., SVOM) and more investigations (physics,
methods, calibration) will allow to go beyond SN la cosm. (e.g.,dark energy EOS)

> Radio observations by SKA will give a significant contribution by providing
unique clues to the physics, energy budget and beaming angle of GRBs



