DARK ENERGY MODELS TOWARDS OBSERVATIONAL TESTS AND DATA

Salvatore Capozziello Università di Napoli "Federico II" and INFN sez. Napoli

1° Congresso Nazionale della Scienza e della Tecnologia di SKA Roma, 19-20 giugno 2012

Theoretical situation is very "DARK" while observations are extremely good!

The matter-energy content of the Universe is unknown for its largest part

The Dark Energy sector

The presence of a Dark Energy component has been proposed after the results of SNeIa observations (HZT [Riess A.G. et al. Ap.J. 116, 1009 (1998)]-SCP [Perlmutter S. et al. Nature 391, 58 (1998)] collaborations)

Dark Energy is here to stay...

The energy density parameter space (today)

The incoming observations (We hope!)

Physical Effects of Dark Energy

Dark Energy affects expansion rate of the Universe:

$$H^{2} = \frac{8\pi G}{3} (\rho_{M} + \rho_{X})$$
$$H(z)^{2} = H_{0}^{2} \left[\Omega_{M} (1+z)^{3} + \Omega_{X} \exp\left[3\int_{0}^{z} (1+w(x))d\ln(1+x)\right] \right]$$

Dark Energy may also interact: long-range forces, new laws of gravity?

Key Issues

Is there Dark Energy?

Will the SNeIa and other results hold up?

- What is the nature of the Dark Energy?
 - Is Λ or something else?
- How does $w = p_X/\rho_X$ evolve?

Dark Energy and w (the EoS viewpoint)

In GR, force \propto (ρ + 3p)

If w < -1/3 the Universe accelerates, w < -1, phantom fields

What is the target?

Dark energy has no agreed physical basis

constant $\Lambda \rightarrow$ static $w \rightarrow$ dynamics (w= $w_0 + w_1 z$) w(z) has no naturally-predicted form

- Wrong parameterization can lead to incorrect deductions: models are degenerate!
- Incremental approaches:
 - reject null hypothesis of Λ (w=-1)
 - prove via more than one method $w \neq const$
 - derive empirical evolution for a(t), G(t), $d_A(z)$

Incremental Exploration of the Unknown

Physical Observables: probing DE

- Luminosity Distance vs redshift: Standard candles: SNe Ia
- Angular diameter distance vs. z: Alcock-Paczynski test: Ly-alpha forest; redshift correlations
- Number counts vs. redshift: probes: * Comoving Volume element * Growth rate of density Pertubations Counts of galaxy halos and of clusters; QSO lensing
- GRBs as distance indicators
- Lookback time vs. clusters and galaxies
- Exteded Radio Source Surveys (SKA!)

Which method is most promising for measuring w?

- Type Ia Supernovae: H(t) to z ≈ 2
 - Ongoing with various ground-based/HST surveys
 - Proposed for both ground and space projects
 - Key issue is systematics: *do we understand SNe Ia*?
- Weak lensing: G(t) to z ≈ 1.5
 - Less well-developed; requires photo-z's
 - Proposed for both ground and space projects
 - Key issues are *fidelity, calibration etc..*
- Baryon "wiggles": d_A(z) to z=3
 - Late developer: clean but *requires huge surveys*
- **Others:** lookback time, cluster gas/counts, GRBs, Radio Sources

Sensitivity to Dark Energy equation of state

CMB Anisotropy:

Angular diameter Distance to last Scattering surface

Peak Multipole

Volume Element as a function of *w*

Counting Galaxy Dark Matter Halos with the DEEP Redshift Survey

10,000 galaxies at $z \sim 1$ with measured linewidths (rotation speeds)

Growth of Density Perturbations

Flat, matter-dominated

Counting Clusters of Galaxies

- Sunyaev Zel'dovich effect
- X-ray emission from cluster gas
- Weak Lensing

$$\frac{dN}{dzd\Omega}(z) = \frac{dV}{dzd\Omega}(z)\int_{M_{\min}(z)}^{\infty} dM \frac{dn}{dM}$$

Simulations:

$$\frac{dn}{dM}(z,M) = 0.315 \frac{\rho_0}{M} \frac{1}{\sigma_M} \frac{d\sigma_M}{dM} \exp\left[-\left|0.61 - \log(D_z \sigma_M)\right|^{3.8}\right]$$
growth factor

Detection Mass thresholds

Haiman, Holder, Mohr 2008, 2011

Proposals for Tracking Dark Energy

DoE/NASA initiated studies for a Joint Dark Energy space mission (JDEM, 2015+), also ESA is at work...

Contenders: SNAP, Destiny, JEDI, EUCLID, PLANCK, (SKA?)..

Shorter term initiatives on the ground (DoD/DoE/NSF):

Pan-STARRS (2008) Dark Energy Survey (2009), VISTA-Dark Camera (2011), WFMOS (2011), LSST (2012)...

Dark Energy Strategy

- Initial goal: verify whether w = -1 (NB: precision depends on value)
- Next goal: combine measures at different z: is w ≠const
- Long term goal: track w(z) empirically

Dark Energy Equation of State from the SNeIa Hubble Diagram

- A two fluid scenario : dark matter + dark energy
- Unknown equation of state (EoS) w(z)
- Assume a functional form for the EoS (motivated or not)
- Compute the luminosity function $d_L(z)$ as

$$d_{L} = \frac{1+z}{H_{0}} \sqrt{1+g} \int_{1}^{1+z} \left\{ g + \exp\left[3\int_{1}^{x} w_{Q}(y)\frac{dy}{y}\right] \right\}^{-\frac{1}{2}} \frac{dx}{x^{\frac{3}{2}}}$$

- Fit to the SNela Hubble diagram
 - Double integration over $w_Q(z)$
 - Similar degeneracy problem for other tests

SNe Ia: early constraints on *w* + LSS data

GOODS sample of z > 1 SNe (Riess et al 2010)

Interpretation depends crucially on UV spectrum

Projected SNAP Sensitivity to DE Equation of State

SNAP Sensitivity to Varying DE Equation of State

Results from CFHT SNLS

Astier et al 2007

What does this mean for precision work beyond z~1?

Beyond z~1, UV dispersion affects color k-correction

Weak Gravitational Lensing

Intervening dark matter distorts the pattern: various probes: shear-shear, g-shear etc

Unlensed

Lensed

Weak Lensing: Number Cts of Background Galaxies

Points: HubbleDeep Field Curve: extrapolation From SDSS luminosity Function w/o mergers

Evolution of the DM Power Spectrum

Growth of DM power spectrum is particularly sensitive to dark energy and *w*.

Via redshift binning of background galaxies, it is possible to constrain *w* independently of SNe

As SNe probe a(t) directly, so power spectrum of DM probes evolution of structure G(t)

Is Weak Lensing Going to Cut It..?

- Everyone agrees: WL is a promising probe
- Many believe it is more fundamentally reliable than SNela
- Need calibration of shear to 10⁻³; systematics to 10^{-3.5}
- Currently best methods 10 x worse
- OK if we understand limitations not clear we do, so much work is needed in next few years

Baryonic Features in the Large Scale

Peebles & Yu 1970; Sunyaev & Zel' dovich 1970

Weak residual of acoustic peaks will be seen in galaxy distribution. Today, for flat geometry it should be at:

$$\lambda_s = \frac{1}{H_0 \Omega_m^{1/2}} \int_0^{a_r} \frac{c_s}{(a + a_{eq})^{1/2}} da = 150 \text{ Mpc}$$

Confirmed at 3-4 σ by 2dF (Cole et al 2004) and SDSS (Eisenstein 2005

Baryon Oscillation Probes

Furthermore we can use time-based measurements using the LOOKBACK TIME

$$t_{lb} = \frac{1}{H_0} \int_0^z \frac{dz}{(1+z)^2 (1+2q_0 z)^{\frac{1}{2}}}$$

Light travel time from an object at redshift z

$$df = t_0^{obs} - t_{lb}(z_F)$$

The estimated age of the Universe today minus the lb-time gives the delay factor related to the ignorance on the formation redshift zF of the object. We used galaxy clusters, radio-galaxies and quasars.

S.C., V. Cardone, M. Funaro, S. Andreon PRD 70 (2004) 123501 S.C., P. Dunsby, E. Piedipalumbo, C. Rubano A&A 472 (2007) 51

Warning !!!

Constraint contours depend on priors assumed for other cosmological parameters!

Conclusions depend on the projected state of knowledge/ignorance !

Conclusions

Dark energy is here to stay:

Does it represent the new cosmological frontier?':

- Its characterization is largely the province of the z<3 universe.</p>
- CMBR measures will not be sufficient
- There is a sound incremental approach: $w \neq -1 \rightarrow w \neq const \rightarrow w(z)$
- Observers are promoting 3 probes:
 SNe,WL & BAO; probably need > 1 method spanning 0<z<3
- Observationally there are formidable challenges (GRBs?)
- SKA could play a major role as **SURVEY RADIO TELESCOPE**
- It is going to take a long long time but we will eventually get there!

In conclusions ...we need...

- Knowledge of DE at fundamental level (Casimir?)
- Versatile and precise physical models
- Removing degeneracies in the parameter space
- Good fit with existing observations (Universe Age, SNela, Angular Size-redshift, CMBR,...)
- Large bulk of data (SKA is particularly WELCOME!)

further developments...suggest...

- to explore the full parameter space $(a, b, z_{s}, H_{0}, q_{0...})$
- proposals for new distance and time indicators (GRBs?)
- investigations at low and high redshifts

WORK IN PROGRESS!!