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lirming concept

1. Performing repeated observations of the Times of Arrival
(ToAs) at the telescope of the pulsations from a given pulsar

2. Searching the ToAs for systematic trends on many
different timescales, from minutes to decades

If a physical model adequately describes the trends, it is
applied with the smallest nhumber of parameters

When a model finally describes
accurately the observed ToAs,
the values of the model’s
parameters shed light onto the
physical properties of the pulsar
and/or of its environment
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Pulsars as clocks

For some pulsars the rotational periods can
sometimes be measured with unrivalled
precision

e.g. on Jan 16, 1999, PSR J0437-4715 had a
period of

5.757451831072007 =+ 0.000000000000008 ms

15 significant digits!



Pulsar Timing applied to binary pulsars

e By using repeated observations of the |
time of arrival of the pulses (Timing) one ~_ Pusar

can measure 5 Keplerian parameters:
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Each PK parameter corresponds to in the
MASS vs MASS diagram

Three PK parameters: in a correct theory the strips



Each PK parameter corresponds to in the
MASS vs MASS diagram

But not in a wrong theory !



rne best binary so far: JO7/37-3039A/8
[ Burgay 2t al 2003, Lyns at al 2004 |

[ © rlowes, NTYF |



The last published mass-mass diagram
for the best binary: JO737-3039A/8
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The impact of SKA

Challenging Einstein:

tests of General Relativity and fundamental
physics in pulsar binary systems

Search speed = (T, ./A.)?Q

Sys

Timing quality O, = Ty /A

Multiplying a factor > 10 the known population
Timing the targets a factor > 10 better than now
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T in

binary relativistic
pulsars are rare...

I'he current
relativistic pulsars
population = 20

The SKA relativistic pulsars
population = 100-200
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Why bother with further improvine GR

tests in strone field ?

Is GR still the best available theory for describing Nature
also under extreme physical conditions?

This is NOT an ACADEMIC question:

e.g. extreme conditions are certainly those at which any long sought
unified model for interactions applies [ e.g. Antoniadis 2005 ]

Moreover, is enough to test alternative theories only
in the weak-field limit?

There exist alternative metric gravity theories (e.g. a subclass
among the tensor-scalar theories) which would pass ALL Solar
System (weak-field limit) tests, but would be violated as soon as
extreme conditions (strong-field limit) are reached
[Damour & Esposito-Farese 1996]



What might be feasible to do:
constraining 2xistznce of Preferred Framsz
16.9 deg/yr ‘\
...If Lorentz-invariance is violated in =
A X PFrame
strong gravitational fields _ -
a preferred frame would exist... g
... and the orbital orientation

relative to it would change due to
orbital precession

time-varying orbital parameters should be seen,
most notably
in longitude of periastron (w) and eccentricity (e)

(w) /. (e) __
m - /m = 11.262 ...for the Double Pulsar...

(w) /.(e) _
Ny ' /ny = 5.642. [ Wex & Kramer 2007, 2010 ]



What might be feasible to mzasurz:
Morment of Inertia of JO737-3039A

Total periastron advance to 2PN level: [ Damour & Schaefer 1988 |
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1PN 2PN SpinA Spin B
Equation-of-State Neutron star dependent
for the nuclear matter!!
A 10% accuracy on | 20c 1 1
would exclude most EoS /3’ S =

2
[ Lattimer & Schutz 2004 ] G P m

[ Morrison et al. 2004]



The impact of SKA

Challenging Einstein:
Test basic principles of Black-Hole physics

Open the parameter space for discovering the
“expectedly very rare” PSR+BH binary

Giving the chance to discover a PSR orbiting Sgr A*



Measuring the mass & the spin of the BH

Mass from PK params assuming GR Spin from measuring higher order
Normal pulsar in highly eccentric (0.9) orbit derivatives of secular changes n semi-

— T major axis and longitude of periastron

0.01 [~ -

Fractional error

0.001 |- . —

Ph

0. 0001 EEE

Py, (day)

Recycled pulsar in eccentric (0.4) orbit

[ Liu 2012, PhD thesis; Liu et al. in prep. ]
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§ lo0s |- ' : Qprec = QPN Lense-Thirring (linear in S)
g REQUIRES SKA!

0.4
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BH mass with precision < 0.1% BH spin with precision < 1%




What will be feasible to mzasurz with SKA
Cosmic Censorship Conjecture

Normal pulsar in highly eccentric (0.9) orbit Recycled pulsar in eccentric (0.4) orbit
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In GR, for Kerr-BH we expect:

test of “Cosmic Censorship Conjecture” [ Penrose 1969 ]




Testing alternate gravity theories

= ..~ = ?72&Z7ZC Even for gravity theories where BHs are the
same as in GR (Kerr), PSR-BH systems would
constitute superb gravity laboratories
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Measur ing the mass Of SGR A* 1fromLiuetal 2012]

Mass measurement from relativistic effects using GR
(one PK parameter is sufficient, since Mpgz << Mgy):
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BH mass with precision < 0.001 %




What might be feasible to mzasurz with SiKA

Blaci-nolz quadrupolz mormezni

The oblateness of the spinning BH results 0
in periodic (at the pace of the orbital 2000
period) transient signals appearing in 1000 -

timing residuals, which depend on the
quadrupole moment Q of the BH

o

residual [mus]

—1000 §

-2000 |

-3000
0

time [yr]

BH quadrupole moment with precision ~ 1%

In GR, for Kerr-BH we expect: -

test of “No Hair” theorem

[ Liu et al. 2012 ]




The impact of SKA

Gravitational Wave Astrophysics
in the nano-Hertz frequency band

= 100 usable clocks to be timed with 100 ns
accuracy



The Pulsar-Eartn path can be used as the arm of a
huge cosmic gravitational wave detector

Source
GWs

Perturbation in space-time can be
detected in timing residuals over a
suitable long observation time span

Radio
Pulsar

Sensitivity (rule of thumb): Earth

where
h.(f) is the dimensionless strain at freq f
O1o4 1S the rms uncertainty in Time of Arrival
T is the duration of the dataspan




An Insitruciive applicaiion

The radio galaxy 3Cé66 (at z = 0.02) was claimed to harbour a
double SMBH with a total mass of 5.4 - 10'° M, and an orbital
period of order ~yr [ Sudou et al 2003]
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Timing residuals from PSR B1855+09 exclude such a
massive double BH at 95 c.l.



A pulsar tirning array (PTA)

Using a number of pulsars distributed across the sky it is possible to
separate the timing noise contribution from each pulsar from the
signature of the GW background, which manifests as a local (at Earth)
distortion in the times of arrival of the pulses which is common to the
signal from all pulsars
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The PTA collaborations

Effelsberg, Germany Pune, India:
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EPTA: The partner institutions

University of Manchester, JBO, GB ASTRON,Un.Leiden,Un.Amsterdam NL
INAF Osservatorio Astronomico di Cagliari, ITA Nancay Observatory, FR

Max-Planck Institut fur Radioastronomie, GER
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LEAP

¢ LargesEuropean Array for
o,  Pulsars (LEAP)
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« Coherent combiitation of 5 major

European telescopes (at 20cm)
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[ Lee et al. 2009 ]

[ Lee et al. 2010 ]
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Graviton mass and polarization of the GWs
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Single source localization in the sky with a PTA

- Single binary super-massive black hole produces periodic signal

- Signal contains information from two distinct epochs: t and t-d/c

N =400c =15ns D_ =2 kpc
psr n Psr

Response pattern of a single pulsar: Tobs

90

=5yr, 1 TOA /2 weeks

6t : : :
180 0 -18 -17 -16 -15 -14

270

[Lee etal. 2011 ]







