

1° Congresso Nazionale della Scienza e della Tecnologia di SKA

La via italiana allo SKA

20 June 2012 MIUR - P.le Kennedy 20 - Roma

General Relativity Tests with Pulsars

<u>Timing concept</u>

1. Performing repeated observations of the Times of Arrival (ToAs) at the telescope of the pulsations from <u>a given pulsar</u>

- 2. Searching the ToAs for systematic trends on many different timescales, from minutes to decades
- If a physical model adequately describes the trends, it is applied with the smallest number of parameters

When a model finally describes accurately the observed ToAs, the values of the model's parameters shed light onto the physical properties of the pulsar and/or of its environment

Good timing solution \rightarrow no evident trend in the residuals

For some pulsars the rotational periods can sometimes be measured with unrivalled precision

e.g. on Jan 16, 1999, PSR J0437-4715 had a period of

5.757451831072007 ± 0.00000000000000 ms

15 significant digits!

Pulsar Timing applied to binary pulsars

• By using repeated observations of the time of arrival of the pulses (Timing) one can measure 5 Keplerian parameters:

 P_{orb} , a_p , e, ω , T_0

... and, in few cases, one or more post-Keplerian parameters: $\tilde{\omega}$, Y, \tilde{P}_{orb} , S, r plus additional GR effects: Ω_{prec} , ...

Each PK parameter corresponds to a strip in the MASS vs MASS diagram

Three PK parameters: in a correct theory the strips overlap !

Each PK parameter corresponds to a strip in the MASS vs MASS diagram

But not in a wrong theory !

A set of the set of the

The best binary so far: J0737-3039A/B

[Burgay et al 2003, Lyne at al 2004]

The impact of SKA **Challenging Einstein:** tests of General Relativity and fundamental physics in pulsar binary systems Search speed $\approx (T_{svs}/A_{eff})^2 \Omega$ Timing quality $\sigma_{ToA} \approx T_{sys}/A_{eff}$ Multiplying a factor > 10 the known population Timing the targets a factor > 10 better than now Chief with a second of the second second

ATNF Pulsar Catalogue

والمتحد والمتحد والمناجع والمحد والمحد

and her the first states of the first states of the first states and the states of the states of the states of the

<u>Why bother with further improving GR</u> <u>tests in strong field ?</u>

Is GR still the best available theory for describing Nature also under extreme physical conditions?

This is NOT an ACADEMIC question:

e.g. extreme conditions are certainly those at which any long sought unified model for interactions applies [e.g. Antoniadis 2005]

Moreover, is enough to test alternative theories only in the weak-field limit?

There exist alternative metric gravity theories (e.g. a subclass among the tensor-scalar theories) which would pass ALL Solar System (weak-field limit) tests, but would be violated as soon as extreme conditions (strong-field limit) are reached [Damour & Esposito-Farese 1996]

What might be feasible to do: constraining existence of Preferred Frame

...If Lorentz-invariance is violated in strong gravitational fields a preferred frame would exist...

... and the orbital orientation relative to it would change due to orbital precession

time-varying orbital parameters should be seen, most notably

in longitude of periastron (ω) and eccentricity (e)

a the first of the second second second second second s

$$\eta_1^{(\omega)}/\eta_1^{(e)} = 11.262$$

 $\eta_2^{(\omega)}/\eta_2^{(e)} = 5.642$

...for the Double Pulsar...

[Wex & Kramer 2007, 2010]

What might be feasible to measure: Moment of Inertia of J0737-3039A

Total periastron advance to 2PN level: [Damour & Schaefer 1988]

The impact of SKA Challenging Einstein: Test basic principles of Black-Hole physics

Open the parameter space for discovering the "expectedly very rare" PSR+BH binary

Giving the chance to discover a PSR orbiting Sgr A*

a been well and the second of the second of the second of the second of the second second second second second

Measuring the mass & the spin of the BH

Liu 2012, PhD thesis; Liu et al. in prep.

Mass from PK params assuming GR

Normal pulsar in highly eccentric (0.9) orbit

 $T_{merg} = 100 \text{ Myr}$

 M_2

0.001

Fractional error

1e-05

1e-06

0.2

Spin from measuring higher order derivatives of secular changes in semimajor axis and longitude of periastron

BH mass with precision < 0.1%

0.8

 $\dot{\mathbf{P}}_{\mathrm{b}}$

0.6

0.4

P_b (day)

sin i

What will be feasible to measure with SKA Cosmic Censorship Conjecture

In GR, for Kerr-BH we expect: $\chi \leq 1$

test of "Cosmic Censorship Conjecture" [Penrose 1969]

All singularities are hidden within Event Horizon of BH! i.e. no "Naked Singularities" allowed!

Testing alternate gravity theories

Even for gravity theories where BHs are the same as in GR (Kerr), PSR-BH systems would constitute superb gravity laboratories

What might be feasible to measure with SKA Black-hole quadrupole moment

The impact of SKA Gravitational Wave Astrophysics in the nano-Hertz frequency band

≈ 100 usable clocks to be timed with 100 ns accuracy

Chief the Star Star and a star of the star

Pulsars as GW detectors

The Pulsar-Earth path can be used as the arm of a huge cosmic gravitational wave detector

Perturbation in space-time can be detected in timing residuals over a suitable long observation time span

Radio Pulsar

Sensitivity (rule of thumb):

Earth

Source of GWs

 σ_{TOA} $h_{c}(j$

where $h_c(f)$ is the dimensionless strain at freq f σ_{TOA} is the rms uncertainty in Time of Arrival T is the duration of the dataspan

A set to a set of the set of

<u>An instructive application</u>

The radio galaxy 3C66 (at z = 0.02) was claimed to harbour a double SMBH with a total mass of $5.4 \cdot 10^{10} M_{sun}$ and an orbital period of order ~yr [Sudou et al 2003]

Timing residuals from PSR B1855+09 <mark>exclude</mark> such a massive double BH <mark>at 95 c.l.</mark>

and here the second of the second second second second

<u>A pulsar timing array (PTA)</u>

Using a number of pulsars distributed across the sky it is possible to separate the timing noise contribution from each pulsar from the signature of the GW background, which manifests as a local (at Earth) distortion in the times of arrival of the pulses which is common to the signal from all pulsars

<u>Pulsar Timing array(s): the frequency space</u> and the sources

Note the complementarity in explored frequencies with respect to the current and the future GW observatories, like LIGO, advLIGO, advVIRGO and LISA

- Expected sources:
- Binary super-massive black holes in early Galaxy evolution
 - Cosmic strings
- Cosmological sources
- Types of signals:
- Stochastic (multiple)
 - Periodic (single)
 - Burst (single)

A subscription with a straight of the second sec

© ATNF

The PTA collaborations

EPTA: The partner institutions

<u>University of Manchester, JBO, GB</u><u>ASTRON,Un.Leiden,Un.Amsterdam NL</u> INAF Osservatorio Astronomico di Cagliari, ITA<u>Nancay Observatory, FR</u> Max-Planck Institut fur Radioastronomie, GER

Current best limits on GW background from EPTA

Large European Array for Pulsars (LEAP)

Coherent combination of 5 major European telescopes (at 20cm)

→ 4% SKA 1

and here the second of the second second second second

The (proto) LEAP results on PSR B1937+21

and president and an and a state of the second and a state of the second second second second second second sec

Current projects are evolving in pace with predictions. Then at least very significant limits on GWB (and hopefully a detection) will be achieved within 5-10 years

A detailed scientific investigation of the GWBackground is warranted with SKA

 $\frac{1}{1} \log(A_c) \log(A_c) \log(A_c)$

