Consiglio Nazionale delle Ricerche E Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Politecnico di Torino - Corso Duca degli Abruzzi, 24 - 10129 TORINO www.ieiit.cnr.it

Recent Results with the UAV-based Array Verification and Calibration System

Framework

Research contract between INAF and CNR-IEIIT

- Title: Power Pattern Measurements on the Modern Low-Frequency Arrays for Radioastronomy (AAVSx, LOFAR, SAD) and Feasibility of Phase Pattern Measurements
- □ INAF PI: Jader Monari and Pietro Bolli
- CNR PI: Giuseppe Virone
- Partner : Politecnico di Torino- DIATI, Resp. Prof. Andrea M. Lingua
- Official initial date: September 2015

TECNO INAF 2014

- Title: Advanced calibration techniques for next generation low-frequency radio astronomical arrays
- PI: Pietro Bolli (OAA) co-PI: Giuseppe Pupillo (IRA-MED) and Tonino Pisanu (OAC)
- Official initial date: April 2015
- Research grant (18 months) to Salvo Pluchino (IRA-Noto)
- External collaborators: Stefan Wijnholds, Andrea Lingua and Giuseppe Virone

CNR IEIIT – Applied Electromagnetics Group

Flying Far-field Test Source

A micro hexacopter is used as far-field RF source flying over the AUT

CNR IEIIT – Applied Electromagnetics Group

- UAV equipped with a continuous-wave RF transmitter and a dipole antenna
- The UAV autonomously performs quasi-rectilinear, constant height paths (GPS navigation) e.g. E-plane or Hplane cuts
- Automatic take-off and landing
- Differental GNSS system to track the position (accuracy few cm)
- On-board IMU to measured attitude (pitch, roll, yaw)

Compass Verification

- Two scatterers on the UAV
- Two total station pointing the UAV (accuracy 1 cm)
- The other angles could be verified as well

CNR IEIIT – Applied Electromagnetics Group

SKALA 2.0 Pattern from 50 to 650 MHz

Courtesy of

UNIVERSITY OF CAMBRIDGE

SKALA dual log-

periodic

antenna

working from

50 to 650 MHz.

Height is about

1.8 m

CNR IEIIT – Applied Electromagnetics Group

LOFAR campaign April 2016

in collaboration with Stefan Wijnholds and Menno Norden

Aerial View of a LOFAR station (The Netherlands)

UAV to perform an end-toend system verification

Three Arrays in Three Days with Multi-frequency TX (almost 300 Patterns/Flight)

Embedded Element Patterns Array Calibration and Pattern Antenna positions (SW's talk)

Courtesy of LBAinner: 48 dual-pol elements (random quasi-dense) 10-80 MHz AST(RON LBAouter: 48 dual-pol elements (random sparse) 10-80 MHz HBA: 48 tiles having 16 dual-pol bow-ties (dense) 120-240 MHz CNR IEIIT – Applied Electromagnetics Group

LOFAR LBA antenna in Turin

LOFAR Low-Band Antenna in Turin

Courtesy of: ASTRON

LBA antenna consists of a pair of crossed inverted-V dipoles operating from 10 to 80 MHz. Antenna height is 1.7 m, width is about 3 m LBA simulation by Michel Arts using WIPL-D

CNR IEIIT – Applied Electromagnetics Group

Gain Measurement

	60 MHz pol. A (1st)	60 MHz pol. A (2nd)	60 MHz pol. B
P_{rec} (dBm)	-24.272 ± 0.1	-24.101 ± 0.1	-24.775 ± 0.1
P_{TX} (dBm)	5.050 ± 0.1	5.050 ± 0.1	5.050 ± 0.1
InsLos (balun) (dB)	$0.298 {\pm} 0.1$	0.298 ± 0.1	0.298 ± 0.1
MisLos (UAV dipole) (dB)	$4.181 {\pm} 0.159$	4.181 ± 0.159	4.181 ± 0.159
g_{UAV} (dB)	2.562 ± 0.1	2.576 ± 0.1	2.603 ± 0.1
PatLos (dB)	$45.437 {\pm} 0.012$	$45.514{\pm}0.012$	45.237 ± 0.012
A_{cables} (dB)	9.252 ± 0.1	9.252 ± 0.1	$9.942 {\pm} 0.1$
g_{AUT} (dB)	$+27.284\pm0.276$	$+27.519\pm0.276$	$+27.231\pm0.276$

CNR IEIIT – Applied Electromagnetics Group

Gain Measurement

	60 MHz pol. A (1st)	60 MHz pol. A (2nd)	60 MHz pol. B
Prec (dBm)	-24.272 ± 0.1	-24.101 ± 0.1	-24.775 ± 0.1
Dec (dBm)	5 050 1 0 1	5 050 0 1	5 050 1 0 1
InsLos (balun) (dB)	0.298 ± 0.1	0.298 ± 0.1	0.298 ± 0.1
MisLos (UAV dipole) (dB)	4.181 ± 0.159	4.181 ± 0.159	4.181 ± 0.159
g_{UAV} (dB)	2.562 ± 0.1	2.576 ± 0.1	2.603 ± 0.1
PatLos (dB)	45.437 ± 0.012	45.514 ± 0.012	45.237 ± 0.012
Acables (dB)	9.252 ± 0.1	9.252±0.1	9.942 ± 0.1
g_{AUT} (dB)	$+27.284{\pm}0.276$	$+27.519\pm0.276$	$+27.231{\pm}0.276$

CNR IEIIT – Applied Electromagnetics Group

Embedded Element Pattern LBA inner

AAVS0.5 Embedded Element Patterns at 50 and 350 MHz

Mullard Radio Astronomy Observatory (UK)

CINR IEIIT – Applied Electromagnetics Group

Phase of Cross Correlation Coefficient at 44.5 MHz

UAV at zenith above central element of the LBA inner

CNR IEIIT – Applied Electromagnetics Group

Residual Phase Value

Baseline 0-40

For shorter baselines where the elements see the UAV at the same observation angle, this residual correspond to the calibration coefficient

CNR IEIIT – Applied Electromagnetics Group

Second Day: Wind Speed 35 km/h

- Cause not yet fully understood
- The day before the wind was even faster. The UAV was not able to follow the preset path but was still able to land automatically
- The values of attitude angles (pitch about 20 Deg) are less accurate
- All the attitude traces are more noisy

CNR IEIIT – Applied Electromagnetics Group

Ideas for the Upcoming Cambridge pre-AAVS1 Campaign

Near-field scan and Relative Phase Measurements

Correlator

Measured Phase $\varphi^{out} = \varphi^{array} - \varphi^{ref} - K(R^{array} - R^{ref})$

CNR IEIIT – Applied Electromagnetics Group

AADC workshop , Bologna, May. 9-13, 2016

Phase Reference

Ongoing: Phase-Locked UAV Transmitter

100ns

CNR IEIIT – Applied Electromagnetics Group

5.00GS/s

 200mV
 22
 100mV

 Value
 Mean
 Min
 Max

 Std Dev
 2.00ns
 5.00C5/s

 Itravo.000000 s
 10k points

 Type
 Source
 Coupling

Ongoing: UAV-based Sensitivity Measurements

by G. Pupillo and S. Pluchino

The proposed method allows to measure the Sensitivity (A_{eff} / T_{sys}) of the system, including all its parts, in the operating environment.

CNR IEIIT – Applied Electromagnetics Group

The method estimates the Power Flux Density at AUT

$$PFD = \frac{P_{Tx} G_{Tx}(\theta', \phi')}{4\pi R^2} \quad [Wm^{-2}]$$

PFD is defined as the transmitted UAV energy, impinging upon the AUT per unit area

UAV-based Sensitivity measurements

by G. Pupillo and S. Pluchino

$$PFD_{sys} = \frac{PFD_{high}P_{low} - PFD_{low}P_{high}}{P_{high} - P_{low}}$$

The sensitivity can be estimated by mean of PFD_{sys} as follow:

Where:

 $P_{meas}[W]$

- *P_{meas}* = measured received power [*W*]
- *PFD_{low}*, *PFD_{high}*= Surface Power Density
 [*Wm*⁻²] corresponding to two different
 power level trasmissions by UAV

Assumptions:

- Rx chain linearity
- Negligible *T_{sys}* and gain variations

CNR IEIIT – Applied Electromagnetics Group

Tasks to be done:

- Error budget investigation
- Simulations
- Test on the field

Conclusion

- Good results obtained on single element, embedded-element patterns from 50 to 650 MHz
- UAV flying test source as an

end-to-end verification and calibration system

- Advantages of UAV-based antenna measurements:
 - Measurements in the real installation conditions
 - Beam pattern measurements on arrays and instrument calibration are possible (see G. Pupillo, et al. "Medicina Array Demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source," Experimental Astronomy, pp. 1-17, Apr. 2015
 - Low cost, portability, no infrastructures

CINR IEIIT – Applied Electromagnetics Group

Phase measurements - CABLES

CNR IEIIT – Applied Electromagnetics Group

Relative Phase Measurements Reference characterization

CNR IEIIT – Applied Electromagnetics Group