Observatoire de la Côte d'Azur : Introduction to the AADC Consortia

Chiara Ferrari

in collaboration with: A. Ferrari, D. Mary, J. Deguignet, M. Vannier (OCA) & participants to ANR Project "MAGELLAN"

Observatoire de la Côte d'Azur (OCA)

- Earth and Space Science research Institute Director: Dr. Thierry LANZ (previously at NASA APD)
- 450 employees organised around three poles
 - √Geophysics and Space geodesy (Géoazur)
 - ✓ Gravitational wave studies (Artemis)
 - √Astrophysics (Lagrange)

Observatoire de la Côte d'Azur (OCA)

- Earth and Space Science research Institute
 Director: Dr. Thierry LANZ (previously at NASA APD)
- 450 employees organised around three poles
 - √Geophysics and Space geodesy (Géoazur)
 - √Gravitational wave studies (Artemis)
 - √Astrophysics (Lagrange)

- Formation and evolution of planetary systems
- Solar and stellar physics
- Physics of galaxies and cosmology
- Signal processing
- Non-linear dynamics

Leading roles in several major international projects, e.g.:

- MATISSE at ESO
- GAIA and Euclid ESA satellites
- Interferometric facility CHARA

Involvement in major radio astronomical projects

LOFAR

Key Project "Surveys"

Since 2008

ASKAP

EMU

Co-lead of "Galaxy Clusters" WG

Since 2010

MeerKAT

MIGHTEE

Since 2010

SKA

Extragalactic Continuum

Member of the SWG Core Team

Since 2013

Bologna, May 9, 2016

Consortia AADC Meeting

Chiara Ferrari

Organisation of the first SKA French Industry Day

The SKA French Industry Day

10 December 2015, Nice (France)

The Côte d'Azur, Paris and Bordeaux Observatories and the CNRS-INSU, in collaboration with SKA Organisation, are pleased to invite you to the SKA French Industry Day, to be held in Nice (France) on December 10th, 2015.

The CNRS Action Spécifique SKA-LOFAR, regrouping scientists from French laboratories involved in radioastronomy, is organising the meeting.

Development of algorithms for radio interferometry

Since 2013: CNRS grant to develop a joint research on "Data analysis for Very Large Arrays in Radioastronomy"

Funding used as a leverage to obtain a grant for 2015–2018 from French National Research Agency for the project MAGELLAN

Data processing for radio interferometry

- Image reconstruction
- Calibration

The Project received in July 2015 a grant (\$18k) from AstroCompute In The Cloud (SKA/AWS)

Sparse representations: a simplified description

- a **dictionary** is a data representation space where the signal can be *sparsified*
 - → the choice of a dictionary depends on the nature of the signal
- an **atom** is a column of a dictionary of the same size as the signal
- a signal is sparse if most of its coefficients are equal to zero
 - → natural signals are compressible or weakly sparse, i.e. most of its coefficients have very low amplitudes

Slide courtesy: A. Dabbech

• The **synthesis-based sparsity approach** assumes that the signal to be recovered (of size *N*) is a linear combination of few atoms of a given over-complete synthesis dictionary (*S* of size *N* × *M* with *M* >> *N*).

• The **synthesis-based sparsity approach** assumes that the signal to be recovered (of size *N*) is a linear combination of few atoms of a given over-complete synthesis dictionary (*S* of size *N* × *M* with *M* >> *N*).

• Synthesis sparse : $\mathbf{x} = \mathbf{S}\boldsymbol{\theta}$, with $\boldsymbol{\theta}$ sparse

• The analysis-based sparsity approach assumes that the projection of the signal x to be recovered onto a given over-complete analysis dictionary (A of size $N \times M$ with M >> N) is sparse.

• The analysis-based sparsity approach assumes that the projection of the signal x to be recovered onto a given over-complete analysis dictionary (A of size $N \times M$ with M >> N) is sparse.

concatenation of J+1 sub-dictionaries of size N×N

★ The IUWT analyzes an image **y** of size N into a set of coefficients:

Application I - Radio interferometric deconvolution

Well posed problem:

- A solution exists
- It is unique
- Its behaviour changes continuously with initial conditions

Deconvolution is an **ill posed problem** due to missing information in the uv coverage → **Infinity number of "skies" that can fit the dirty map**

Application I - Radio interferometric deconvolution

- Maximum likelihood approaches aiming to estimate the signal that best fits the data are not sufficient to solve ill posed problems.
- Additional information on the solution is required and must be added to the inverse problem as regularization terms.

The inverse problem takes the form

$$min_x \quad \Phi_{fidelity}(y,x) \quad s.t. \quad \Phi_{prior}(x)$$

- $\Phi_{fidelity}(y, x)$ = fidelity to data term, i.e. distance between the available noisy data y and the possible measured data given the signal x

$$\rightarrow \Phi_{fidelity}(y,x) = \frac{1}{2}||Y - HX||^2$$
 in this case

- $\Phi_{prior}(x)$ = regularization term corresponding to the additional information on the signal to be estimated

$$\rightarrow$$
 ???

 Besides the positivity prior, the sparsity priors have been very successful in image reconstruction.

Regularisation through Synthesis & Analysis

$$min_x \quad \Phi_{fidelity}(y,x) \quad s.t. \quad \Phi_{prior}(x)$$

- **Synthesis:** the regularisation term takes the form $\Phi_{prior}(\mathbf{x}) = \mu \|\gamma\|_n$, with, in general, n=1.

The synthesis model $y = HS\gamma + n$ where γ is sparse

ex.
$$\hat{\mathbf{x}}_s = \mathbf{S}.\{\arg\min_{\gamma} \parallel \mathbf{y} - \mathbf{H}\mathbf{S}\gamma \parallel_2^2 + \mu \parallel \gamma \parallel_p^p\}.$$

Regularisation through Synthesis & Analysis

$$min_x \quad \Phi_{fidelity}(y,x) \quad s.t. \quad \Phi_{prior}(x)$$

- **Synthesis:** the regularisation term takes the form $\Phi_{prior}(\mathbf{x}) = \mu \|\gamma\|_n$, with, in general, n=1.

The synthesis model $y = HS\gamma + n$ where γ is sparse

ex.
$$\hat{\mathbf{x}}_s = \mathbf{S}.\{\arg\min_{\gamma} \parallel \mathbf{y} - \mathbf{H}\mathbf{S}\gamma \parallel_2^2 + \mu \parallel \gamma \parallel_p^p\}.$$

- Analysis: the regularisation term takes the form $\Phi_{prior}(\mathbf{x}) = \mu \|\mathbf{A}^{\top}\mathbf{x}\|_n$, with, in general, n=1.

The analysis model $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$ where $\mathbf{A}^T\mathbf{x}$ is sparse

ex.
$$\hat{\mathbf{x}}_a = \arg\min_{\mathbf{x}} \parallel \mathbf{y} - \mathbf{H}\mathbf{x} \parallel_2^2 + \mu \parallel \mathbf{A}^{\top}\mathbf{x} \parallel_p^p$$

MORESANE:

Model Reconstruction by Synthesis-Analysis Estimators

* Signal model

$$\mathbf{x} = \sum_{i}^{P} \mathbf{o}^{(i)} = \mathbf{X}\boldsymbol{\theta}$$
, where $\mathbf{o}^{(i)} = \boldsymbol{\theta}_i \mathbf{X}_i$ P<

 \mathbf{X} synthesis dictionary, whose atoms are $\mathbf{X}_i = rac{\mathbf{o}^{(i)}}{||\mathbf{o}^{(i)}||_2}$

* Data model

$$y = HX\theta + n$$

sparse synthesis problem with
unknown synthesis dictionary

- Greedy, iterative
- st The atoms \mathbf{X}_i are estimated using **analysis** priors

Dabbech+ 12, 15 See also PhD Dabbech (on ADS)

MORESANE: application to simulated data

Radio galaxies + Radio halo ($P_{1.4 \text{ GHz}} \sim 1 \times 10^{24} \text{ W/Hz}$)

8 hours observations 60 sec integration time 50 MHz BW starting @ 1415 MHz

Relativistic electron population

+ Magnetic field model

Faraday tool (Murgia+ 04)

Simulations of SKA1 MID observations

MeqTrees tool (Noordam & Smirnov 10)

Simulated SKA1-MID observations

Dirty maps
@ 1 & 5 arcsec resolution

Ferrari+ 15 - PoS(AASKA14)075 See also Dabbech+ 15

Up to which z can we detect galaxy clusters? Results with CLEAN

Uniform weighting

res ~ 1.8 arcsec rms ~ 2.4 µJy/b

Uniform weighting

res ~ 4.5 arcsec rms ~1.7 μJy/b

Up to which z can we detect galaxy clusters? Results with CLEAN

Uniform weighting

res ~ 1.8 arcsec rms ~ 2.5 µJy/b

Uniform weighting

res ~ 4.5 arcsec rms ~1.9 µJy/b

Up to which z can we detect galaxy clusters? Results with CLEAN & MORESANE

MORESANE: application to real observations

https://github.com/ratt-ru/PyMORESANE

(A python and pyCUDA-accelerated implementation of MORESANE by J. Kenyon, Rhodes University, available on GitHub)

Multi-frequency image reconstruction

Rely on a model of the frequency-dependent brightness distribution

Taylor expansion of a power law around a reference frequency.

"Double deconvolution" of a "wide-band" dirty image

- "double deconvolution", (Conway et al. 1990).
- "double CLEAN", (Sault and Wieringa 1994).

Taylor expansion of a power law (with a varying index).

Multi-frequencies deconvolution:

- Multi-scale multi-frequency CLEAN, (Rau and Cornwell 2011)
- · Maximum entropy algorithm, (Bajkova and Pushkarev 2011).

Power law.

Multi-frequency deconvolution using a Bayesian estimation framework, (Jun-klewitz et al. 2014).

MUFFIN:

Multi-Frequency Image Reconstruction for Radio Interferometry

The regularization game

Ferrari, A. +15

Objective function = data fidelity + regularization

$$\min_{\mathbf{X}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|^2 + f_{\text{reg}}(\mathbf{X})$$

Sparse analysis prior

$$f^{\text{reg}}(X) = \mathbf{1}_{\mathbb{R}^+}(X) + \frac{\mu_{\varepsilon}}{2} ||X||_F^2 + \mu_{\text{S}} ||W_{\text{S}}X||_1 + \mu_{\nu} ||XW_{\nu}||_1$$

- $\mathbf{1}_{\mathbb{R}^+}(X)$: positivity constraint, $||X||_F^2$: Tikhonov (if needed).
- $||W_sX||_1 = ||W_sx_1||_1 + \ldots + ||W_sx_L||_1 \rightarrow W_s$ analyses the columns of X, i.e. the single frequency images.

The ℓ_1 norm promotes sparsity in the analysis coefficients $W_s x_\ell$.

• $\|XW_{\nu}\|_1 = \|W_{\nu}^{\top}X^{\top}\|_1 \to W_{\nu}^{\top}$ analyses the lines of X, i.e. the spectra.

https://github.com/andferrari/Muffin.jl

(A Julia parallel version of MUFFIN available on GitHub)

MUFFIN: RESULTS ON SIMULATIONS

$$SNR(\boldsymbol{X}, \boldsymbol{X}^{\star}) := 10 \log_{10} \left(\frac{\|\boldsymbol{X}^{\star}\|_{2}^{2}}{\|\boldsymbol{X} - \boldsymbol{X}^{\star}\|_{2}^{2}} \right)$$

MUFFIN: RESULTS ON SIMULATIONS

MUFFIN: RESULTS ON SIMULATIONS

Based on galaxy cluster simulated images by

F. Loi, M. Murgia, F. Govoni (INAF, Cagliari)

2048 x 2048 x 64 cubes
Comparison with MFMS
CLEAN
(CASA implementation)

Deguignet+ in prep.

Application II - Radio interferometric calibration

Designing super-resolution calibration algorithms for modern radio interferometers

- Robustness: wider distribution class than the Gaussian one, to model the noise
- Computational efficiency: based on an iterative maximum-likelihood estimator for the case of non-uniform white and coloured noise and sparse representation framework

M.N. El Korso, R. Boyer and P. Larzabal:

organisers of special session "Advanced methods in calibration for interferometry phased array in radio-astronomy"

EUSIPCO 2016

See first results in:

[1] M. Brossard, M. N. El Korso, M. Pesavento, R. Boyer and P. Larzabal, "Calibration of Radio Interferometers Using a Sparse DOA Estimation Framework", http://arxiv.org/abs/1603.00263

[2] V. Ollier, M. N. El Korso, R. Boyer, P. Larzabal and M. Pesavento, "Relaxed concentrated MLE for robust calibration of radio interferometers", http://arxiv.org/abs/1603.01070

AADC @ OCA: algorithmic developments

Participation to the AADC consortia in Nice

(1.7 PY in S2 for a total cost of ~150 k€)

- Chiara FERRARI, Astronomer at OCA
- André FERRARI, Professor at UNS
- David MARY, Professor at UNS
- Jérémy DEGUIGNET, PhD student at OCA
- Martin VANNIER, Research engineer at OCA

Extra-galactic team @ OCA

Signal Processing team @ OCA

External collaborators

- Group in École Normale Supérieure de Cachan
- Group in Télécom ParisTech