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• Earth and Space Science research Institute  

Director: Dr. Thierry LANZ (previously at NASA APD)


• 450 employees organised around three poles 

✓Geophysics and Space geodesy (Géoazur) 
✓Gravitational wave studies (Artemis)

✓Astrophysics (Lagrange) - Formation and evolution of 

planetary systems

- Solar and stellar physics

- Physics of galaxies and cosmology

- Signal processing

- Non-linear dynamics


Leading roles in several major international 
projects, e.g.:  

- MATISSE at ESO

- GAIA and Euclid ESA satellites

- Interferometric facility CHARA



Involvement in major radio astronomical projects
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SKA

LOFAR

ASKAP

MeerKAT

Key Project “Surveys”

EMU

MIGHTEE

Extragalactic Continuum

Since 2008

Since 2010

Since 2010

Since 2013

Co-lead of “Galaxy Clusters” WG

Member of the SWG Core Team



Organisation of the first SKA French Industry Day
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Development of algorithms for radio interferometry
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Since 2013: CNRS grant to develop 
a joint research on “Data analysis for 
Very Large Arrays in 
Radioastronomy” 


Funding used as a leverage to 
obtain a grant for 2015–2018 from 
French National Research Agency 
for the project MAGELLAN


The Project received in July 2015 a 
grant ($18k) from AstroCompute In 
The Cloud (SKA/AWS)


Data processing for 
radio interferometry 

- Image reconstruction 

- Calibration



Sparse representations: a simplified description
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Slide courtesy: A. Dabbech

3.Sparse Representations
A signal is sparse if  most of its coeEcients are 
equal to zero

8 natural signals are compressible or weakly sparse, 
i.e. most of its coeEcients have very low amplitudes

Sparsity measure:  l0 norm (# non zero elements)
8  pseudo norm, hard NP-problem
8  relaxed with lp norm (0<pV1)
8  l1 norm is preferred in general

a dictionary is a data representation space 
where the signal can be sparsi�ed
8 the choice of a dictionary depends on the nature 
of the signal

an atom is a column of a dictionary of the 
same size as the signal
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Sparsity promoting approaches
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3.MORESANE Dictionaries

 The IUWT up to a scale J8 analysis dictionary A = [A
 (1) 

, .. , A 
(J+1)

 ], 
concatenation of  J+1  sub-dictionaries of size N×N          

 The Isotropic Undecimated Wavelet Transform IUWT (Starck et al., 2007)
8 demonstrated eEciency to astronomical objects (isotropy + translation invariance)
8 rapidity as a transform

a =AT y=[w
1
T, ... ,wJ

T,cJ
T]T   of size NP(J+1)

 The IUWT analyzes an image y of size N into a set of coeEcients: 

a =     A
(1)

T y               A
(2)

T y              A
(3)

Ty                A
(4)

T y            A
(5)

T  y     

                        

    y 
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Application I - 
Radio interferometric deconvolution
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Radio interferometric problem

Problem ill posed due to the missing information in the uv coverage !
—> Infinity number of skies that can fit the Dirty map

→

Well posed problem:  
• A solution exists 


• It is unique


• Its behaviour changes continuously with initial conditions


Deconvolution is an ill posed problem due to missing information in the 

uv coverage → Infinity number of “skies” that can fit the dirty map 



Application I - 
Radio interferometric deconvolution
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Regularisation through Synthesis & Analysis
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3.Sparsity Promoting approaches 

ex.

Analysis Approach
The projection of the signal  x in a given  analysis dictionary A of size NPM 
(M<<N)  is sparse 

 The analysis model      y = Hx+ n  where ATx   is sparse

ex.

 The synthesis model     y = HS⇥+ n  where ⇥  is sparse

Synthesis Approach
The signal x is a linear combination of   few atoms of a given synthesis dictionary
 S of size NPM (M<<N)

PhD Defense – A.DABBECH 17/41
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MORESANE:  
Model Reconstruction by Synthesis-Analysis Estimators
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P<<N

 Greedy, iterative 
 The atoms      are estimated using analysis priors 

3.MORESANE: the approach

sparse synthesis problem with 
unknown synthesis  dictionary

Dabbech et al. 2012, 2015 

 Signal model

 X synthesis dictionary, whose atoms are

 Data model

H convolution matrix with the PSF 
D(i)   a diagonal matrix mapping the 
selected wavelet coeEcients  ⇤(i)    

PhD Defense – A.DABBECH 19/41

Dabbech+ 12, 15 
See also PhD Dabbech (on ADS)



Radio galaxies + 

Radio halo (P1.4 GHz ~ 1 × 1024 W/Hz)

Relativistic electron population  
+ Magnetic field model 
Faraday tool (Murgia+ 04)

Simulations of SKA1 MID 
observations 

MeqTrees tool (Noordam & Smirnov 10)

8 hours observations 

60 sec integration time


50 MHz BW starting @ 1415 MHz

MORESANE: application to simulated data
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Simulated SKA1-MID observations

Ferrari+ 15 - PoS(AASKA14)075 
See also Dabbech+ 15
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Dirty maps
@ 1 & 5 arcsec resolution



Uniform weighting
res ~ 1.8 arcsec 
rms ~ 2.4 µJy/b

z=0.5   

Uniform weighting
res ~ 4.5 arcsec 
rms ~1.7 µJy/b

Up to which z can we detect galaxy clusters?  
Results with CLEAN
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z=1.0   

Uniform weighting
res ~ 1.8 arcsec 
rms ~ 2.5 µJy/b

Uniform weighting
res ~ 4.5 arcsec 
rms ~1.9 µJy/b

Up to which z can we detect galaxy clusters?  
Results with CLEAN
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Simulated cluster MORESANE 
source model

MORESANE 
residuals

MS-CLEAN 
residuals

MS-CLEAN 
source model

z=0.5
Res ~ 1”

z=1.0
Res ~ 1”

Up to which z can we detect galaxy clusters?  
Results with CLEAN & MORESANE



MORESANE: application to real observations
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VLA 1.4GHz 
“LOFAR 
is doing 
great!” 

LOFAR 3G calibration now being applied to JVLA 
data:

Cyg-A at 100000:1 Courtesy O. Smirnov. 

https://github.com/ratt-ru/PyMORESANE

(A python and pyCUDA-accelerated implementation of MORESANE by J. Kenyon, Rhodes University, available on GitHub)

https://github.com/ratt-ru/PyMORESANE


Multi-frequency image reconstruction
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MUFFIN:  
Multi-Frequency Image Reconstruction for Radio Interferometry

 Ferrari, A. +15

https://github.com/andferrari/Muffin.jl 

(A Julia parallel version of MUFFIN available on GitHub)



MUFFIN: RESULTS ON SIMULATIONS
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µS > 0 & µ⌫ = 0 µS > 0 & µ⌫ > 0
True (X*)

Estimated (X)

Submitted to EUSIPCO 33016

IV. SIMULATIONS

Simulations use PSFs obtained with the HI-inator package2

based on MeqTrees software [25] with MeerKAT arrays con-
figuration. For the purpose of making Monte Carlo simula-
tions, we simulated small cubes of 15 frequency bands with
images of 256⇥256 pixels. Fig. 1 shows the PSF at the central
wavelength, which corresponds to a Fourier coverage produced
by a total observation time of 8 hours. In Algorithm 1, W s

in (11) corresponds to “2nd” generation IUWT [4] and W †
s

in (9) is the exact corresponding adjoint operator.
Two different sky sources are used for these simulations.

The first one is similar to the first simulation of [11] and
is aimed to test the ability of the algorithm to reconstruct a
particular spectrum. At a reference wavelength �0 the image
consists in two overlapping Gaussian profiles centered at pixel
(128,108) and (128,148), see Fig. 1 (Right). The spectra of
the two objects are proportional respectively to �/�0 and
�0/� (this corresponds to astronomical spectral indices equal
respectively to �1.0 and +1.0). Figure 2 compares the “dirty”,
true and estimated spectra at three spatial positions: pixels
(128,108), (128,128) and (128,148). The left plot shows the
results at the two extremal positions. At these positions the
effect of the most distant object is negligible: the spectra
are proportional to �/�0 and �0/�. The right plot shows the
result obtained at the center of the image: the spectrum is
proportional to �/�0+�0/� and cannot be approximated by
a simple power law. Fig. 2 shows that this non parametric
approach is able to recover the different types of spectra.

The next simulation is a preliminary result illustrating
the relative performances of IUWT w.r.t. the union of eight
Daubechies wavelet bases used in [17]. The sky corresponds
to the radio emission of an HII region in the M31 galaxy. A
sky cube is computed from this real sky image by applying a
first order power-law spectrum model. The 256⇥ 256 map of
spectral indices is constructed following the procedure detailed
in [12]: for each pixel, the spectral index is a linear combina-
tion of an homogeneous Gaussian field and the reference sky
image. A Gaussian noise corresponding to 10 dB was finally
added to the dirty images to simulate instrumental and model
errors. The parameters of the optimization algorithm are set
to ⇢ = 1, � = 1 and ⌧ = 10

�5.
A critical problem for the deconvolution of large data cubes

is the calibration of the regularization parameters µs and µ�.
We propose to cope with this problem using the following
strategy which decouples the calibration in two steps:

1) µ� is first set to 0: the problem is separable w.r.t.
the wavelengths and each node independently iterates
Eqs. (8-12) with t` = 0. This setting which avoids
data transfers with the master node is relatively fast
and allows multiple runs to calibrate µs e.g. by cross-
validation.

2) The second step keeps µs and the X estimated in step
1) and calibrates µ� using the full algorithm with X as
an initial condition.

2https://github.com/SpheMakh/HI-Inator

Fig. 1. Left. PSF at the central wavelength. Note the large central lobe and
high level, ringed sidelobes (up to 40% of the maximum) at large angular
distances. Right. sky object at the central wavelength for simulation 1 : two
overlapping Gaussian profiles (in arbitrary flux unit).

Fig. 2. Sky object: two overlapping Gaussian profiles with spectral index
equal to respectively -1.0 and +1.0. Left and top right columns represent true,
dirty and estimated spectra at different position of the field. Bottom right
panel shows the same spectrum as top right but on a different scale.

Fig. 3 compares the reconstruction Signal to Noise Ratio
(SNR) for the union of bases (blue) and IUWT (green) as a
function of the iterations. SNR is here defined as:

SNR(X,X?
) := 10 log10

✓
kX?k22

kX �X?k22

◆
(15)

where X is the estimated solution and X? the “sky truth”.
The first 2000 iterations correspond to step 1) i.e. µ� = 0

and µs = 0.25, and the following iterations to step 2) i.e.
µs = 0.25 and µ� = 3.0. The value of µs = 0.25 in 1) and
µ� = 3 in 2) were set, for both types of wavelets, after trials

Fig. 3. Comparison of the SNR for union of orthogonal bases and IUWT.
Spectral regularization is turned on at iteration 2000.

Deguignet+ 16
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2048 x 2048 x 64 cubes

Comparison with MFMS 

CLEAN 

(CASA implementation)


Deguignet+ in prep.

Based on galaxy 
cluster simulated 

images by

F. Loi, M. Murgia, F. 

Govoni 
(INAF, Cagliari)

Sky Reconstructed 
model

Dirty map



Application II - 
Radio interferometric calibration
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See first results in:  

 [1] M. Brossard, M. N. El Korso, M. Pesavento, R. Boyer and P. Larzabal, "Calibration of Radio 
Interferometers Using a Sparse DOA Estimation Framework", http://arxiv.org/abs/1603.00263 
[2] V. Ollier, M. N. El Korso, R. Boyer, P. Larzabal and M. Pesavento, "Relaxed concentrated MLE for robust 
calibration of radio interferometers", http://arxiv.org/abs/1603.01070 

Designing super-resolution calibration 
algorithms for modern radio 

interferometers 
- Robustness : wider distribution class than the 

Gaussian one, to model the noise


- Computational efficiency : based on an 
iterative maximum-likelihood estimator for the 
case of non-uniform white and coloured noise 
and sparse representation framework

M.N. El Korso, R. Boyer and P. Larzabal : 


organisers of special session “Advanced 
methods in calibration for interferometry 

phased array in radio-astronomy” 

EUSIPCO 2016

http://www.eusipco2016.org/


AADC @ OCA: algorithmic developments

Bologna, May 9, 2016 Consortia AADC Meeting Chiara Ferrari

Participation to the AADC consortia in Nice  
(1.7 PY in S2 for a total cost of ~150 k€)


• Chiara FERRARI, Astronomer at OCA 


• André FERRARI, Professor at UNS


• David MARY, Professor at UNS


• Jérémy DEGUIGNET, PhD student at OCA


• Martin VANNIER, Research engineer at OCA


External collaborators 

• Group in École Normale Supérieure de Cachan

• Group in Télécom ParisTech

Signal Processing team @ OCA

Extra-galactic team @ OCA


