

SKA1 beam models

Eloy de Lera Acedo (University of Cambridge) email: eloy@mrao.cam.ac.uk

10th May 2016

- Introduction
- SKA EM simulation framework
- Discussion

- Parameterized SKA station beam models are products that LFAA have to deliver to TM/SDP.
- Here we present the status of the current EM simulation framework.
- Discussion is needed about future steps.

SKA station

E. de Lera Acedo, "SKALA: A log-periodic antenna for the SKA," (ICEAA), 2012.

LOW FREQUENCY APERTURE ARRAY THE SKA EM simulation framework

MBF are current distributions on a sub-domain written as an aggregation of elementary basis functions.

Current distribution on each antenna in the array as a sum of a few MBFs.

10th May 2016

The SKA EM simulation framework

Idea: interaction between antennas are approximated as far-field interaction.

Model the difference

[1] D. Gonzalez-Ovejero and C. Craeye, "Interpolatory Macro Basis Functions Analysis of Non-Periodic arrays," TAP, 2011.

10th May 2016

Far-field approximation

Pre-defined grid: red circle for the source antenna, blue circle for testing position.

 $Z_{\rm TS}^{\rm ext}$ vs. $Z_{\rm TS}^{\rm app}$.

[1] D. Gonzalez-Ovejero and C. Craeye, "Interpolatory Macro Basis Functions Analysis of Non-Periodic arrays," TAP, 2011.

LOW FREQUENCY APERTURE ARRAY THE SKA EM simulation framework

Far-field subtraction

 $Z_{\text{\tiny TS}}^{\text{ext}}(r,\hat{lpha}) - Z_{\text{\tiny TS}}^{\text{app}}(r,\hat{lpha})$

[1] D. Gonzalez-Ovejero and C. Craeye, "Interpolatory Macro Basis Functions Analysis of Non-Periodic arrays," TAP, 2011.

1	0th	M	av	20)16)
			- /			

Sł

The SKA EM simulation framework

[1] D. Gonzalez-Ovejero and C. Craeye, "Interpolatory Macro Basis Functions Analysis of Non-Periodic arrays," TAP, 2011.

Sk

HARmonic Polynomial ((HARP)) Representation

$$\begin{split} B_{\mathrm{TS}}(r,\hat{\alpha}) &= \sum_{p=-P}^{P} e^{jp\phi} \sum_{q=0}^{Q} c_{pq} \; (kr)^{-q} \\ Z_{\mathrm{TS}}(r,\hat{\alpha}) &\approx Z_{\mathrm{TS}}^{\mathrm{far}}(r,\hat{\alpha}) + B_{\mathrm{TS}}(r,\hat{\alpha}) \end{split}$$

[1] D. Gonzalez-Ovejero and C. Craeye, "Interpolatory Macro Basis Functions Analysis of Non-Periodic arrays," TAP, 2011.

Current work: Validation

- A station of 256 SKALAs
- Simulated at 110 MHz
- SKALA discretized by 1218 basis functions
- 20 MBFs
- Validated with CST and WIPL-D

Error defined as:

$$e = 10 \log_{10} \left(\frac{\left| \vec{E}_{\rm BF}(\theta, \phi) - \vec{E}_{\rm HARP}(\theta, \phi) \right|^2}{\max \left| \vec{E}_{\rm BF}(\theta, \phi) \right|^2} \right)$$

10th May 2016

Embedded Element Patterns:

10th May 2016

AST(RON

Embedded Element Patterns:

10th May 2016

10th May 2016

*In preparation for IEEE TAP

10th May 2016

Uniformly excited array: 1^{st} polarization

Performance on a SKA station for 1 frequency

	CST ¹	WIPL-D ²	HARP ³
Preparation	–	–	3 hours
Simulation	96 hours	97 hours	1 mins

NB: The preparation for HARP has been done once and for all, for each frequency, regardless the array configurations.

¹On a sever with 384 GB of RAM at University of Cambridge ²On the Windows Server with 125GB of RAM at ASTRON, The Netherlands ³On a desktop with 16GB of RAM at Université catholique de Louvain

10th May 2016

10th May 2016

SKA station scanned 50°

*In preparation, 2016

- For calibration and image formation, models of the beam are necessary.
- Required:
 - Few coefficients (for few measurement points)
 - Quick access
 - Low storage requirements

Zernike representation of deficiencies in the pattern including mutual coupling

- The Embedded Element Patterns (EEPs) define the "expected" array pattern.
- The variations with respect to the simulated response are mapped using Zernike polynomials.*
- The weights for the "reconstructed" pattern can be found from the combination of basis functions and a least squares estimation from a few measured points.
 *de Lera et al., ICEAA 2013

Zernike polynomials

$$\overline{F_{rec}}_{t}^{(\theta,\phi)} = \sum_{m=1}^{t} \alpha_{m} \sum_{i=1}^{n} \overline{f}_{i}^{(\theta,\phi)} e^{-j(\varphi_{i}^{-}-\varphi_{i,0})} Z_{m}$$

- It is inspired from radiation from apertures, but including effects of mutual coupling. In here, the Zernike polynomials map the divergences in the main beam and first side-lobes!
- They are generic and flexible.
- We can optimize the number of coefficients needed according to the number of available measurement points.

Similar to theory of ~circular apertures:

Y. Rahmat-Samii and V. Galindo-Israel, "Shaped reflector antenna analysis using the Jacobi-Bessel series," IEEE Trans. Antennas Propagat., Vol. 28, no.4, pp. 425-435, Jul. 1980.

Pre-computed smooth EEPs

- They can be pre-computed accurately.
- They are smooth and can be stored with low resolution (enough for main beam and first few side-lobes).
 Better simulated EEPs mean less Zernike polynomials needed.

$$\overline{F_{rec}}_{t}^{(\theta,\phi)} = \sum_{m=1}^{t} \alpha_{m} \sum_{i=1}^{n} \overline{\overline{f}_{i}(\theta,\phi)} e^{-j(\varphi_{i}-\varphi_{i,0})} Z_{m}$$

Spherical Harmonics

*de Lera et al., ICEAA 2011

• Study of the effect of the distribution of the sources and the number of them.

10th May 2016

- Up to now, EM simulations used for:
 - Array and element design
 - Tolerance analysis
 - Analysis of environmental effects

- In future, beam models needed for optimal calibration and high dynamic range imaging.
 - Example: Mitra, Makhathini, Foster, Smirnov, Perley, "Incorporation of antenna primary beam patterns in radiointerferometric data reduction to produce wide-field, highdynamic-range images", ICEAA 2015.

- EM simulation framework for SKA up and running
- Parameterized beam models exist. Accuracy is understood.
- Discussion needed for the next steps:
 - What is the correct parameterization?
 - How do we further validate these models (AAVS1 and beyond)
 - How do they fit in the SKA pipeline
 - Etc.