From Observations to Physics: Cosmological Evolution of Radio Galaxies

Anna Kapińska, Christian Kaiser
University of Southampton, UK

4th CSS/GPS Workshop, Riccione, Italy
29th May 2008
Objectives

theoretical predictions ↔ observations ↔ intrinsic properties
Objectives

theoretical predictions \[\leftrightarrow\] observations \[\leftrightarrow\] intrinsic properties

KDA & KA models:
* Kaiser, Dennett-Thorpe & Alexander, 1997
* Kaiser & Alexander, 1997

29th May 2008 - 4th CSS/GPS Workshop, Riccione, Italy
Objectives

theoretical predictions ↔ observations ↔ intrinsic properties

Radio luminosity L
Size D
Redshift z

Kaiser, Dennett-Thorpe & Alexander, 1997 (KDA)
Kaiser & Alexander, 1997 (KA)
Objectives

theoretical predictions \[\downarrow\] observations \[\downarrow\] intrinsic properties

Radio luminosity L
Size D
Redshift z
Jet power Q
External density structure $\rho_x = (\rho a^\beta) r^{-\beta}$
Source age t
Lobe pressure p

Kaiser, Dennett-Thorpe & Alexander, 1997 (KDA)
Kaiser & Alexander, 1997 (KA)

29th May 2008 - 4th CSS/GPS Workshop, Riccione, Italy
Objectives

theoretical predictions \[\rightarrow\] observations \[\rightarrow\] intrinsic properties

Radio luminosity L

Size D

Redshift z

Jet power Q

External density structure $\rho_x = (\rho a^\beta) r^{-\beta}$

Source age t

Lobe pressure p

Kaiser, Dennett-Thorpe & Alexander, 1997 (KDA)
Kaiser & Alexander, 1997 (KA)
Objectives

theoretical predictions \leftrightarrow observations \leftrightarrow intrinsic properties

$↓$ $↓$ $↓$

Radio luminosity L
Size D
Redshift z

Jet power Q
External density structure $\rho_x = (\rho_a \beta) r^{-\beta}$
Source age t
Lobe pressure p

Kaiser, Dennett-Thorpe & Alexander, 1997 (KDA)
Kaiser & Alexander, 1997 (KA)
Catalogues

- **3CRR**
 Laing, Riley & Longair (1983)

- **BRL**
 Best, Röttgering & Lehnert (1999)

- **7CRS**
 McGilchrist et al. (1990)
 [see also Lacy et al. (1999), Grimes et al. (2004)]

flux-limited complete samples
Lobe pressure p

Minimum energy requirements:

$$ p^{7/4} \propto L \cdot D^{-3} $$
Lobe pressure p

Minimum energy requirements:

$$p^{7/4} \propto L D^{-3}$$

CSS/GPS

10 kpc – max linear size

(Alexander 2000)
Lobe pressure ρ
Lobe pressure p

From the KA model:

$$p = f(Q, \rho a^\beta) \cdot t^{(-\beta-4)/(5-\beta)}$$
Lobe pressure p

From the KA model: $\beta = 1.5$

$$p = f(Q, \rho a^\beta) \; t^{(-\beta-4)/(5-\beta)}$$

For individual source:

$$Q = \text{const}$$

$$(\rho a^\beta) = \text{const}$$
Lobe pressure p

From the KA model:

$$p = f(Q, \rho a^\beta) \cdot t^{(-\beta-4)/(5-\beta)}$$

$\beta = 1.5$

For individual source:

$Q = \text{const}$

$(\rho a^\beta) = \text{const}$

$$x \ [\%] = \frac{t_{i+1} - t_i}{t_{max}}$$
Lobe pressure ρ

![Graph showing the evolution of lobe pressure with redshift.](image)
Lobe pressure p

- red – observed
- blue – expected
Lobe pressure p

red – observed
blue – expected
Lobe pressure p

red – observed
blue – expected

$z < 0.3$

$z > 0.3$
Lobe pressure ρ

red – observed
blue – expected

z < 0.3

z > 0.3
Size evolution D
Size evolution D

red – observed
blue – expected

$z < 0.3$

$z > 0.3$
Size evolution D

red – observed
blue – expected
Size evolution D

red – observed
blue – expected

$z < 0.3$

$z > 0.3$
Size evolution D

red – observed
blue – expected

z < 0.3

z > 0.3

29th May 2008 - 4th CSS/GPS Workshop, Riccione, Italy
Conclusions

• Redshift evolution.
• Size cut-off much earlier than expected – Mpc sources are rare!
• New low-redshift sample to analyse.
• Pressure evolution affected only by size?