Fast outflows in BAL quasars and their connection with CSS/GPS sources

G. Bruni MPIfR (Germany), IRA – INAF (Italy)

Collaborators: K.-H. Mack, D. Dallacasa, J.I. González-Serrano, F.M. Montenegro-Montes, M. Brienza

CSS-GPS workshop Rimini, 27-29 May 2015

Outflows facts

- Present in most of the accreting objects, at various scales (from proto-stars to AGNs)
- Different launching mechanism (thermal, radiation pressure, magnetic fields)
- Can reach relativistic velocities
- Strong effect/feedback on surrounding AGN environment (e.g. star formation inhibition, Tombesi et al. 2015)
- Detected in different bands (UFOs in X-ray, BALs in UV/Optical...)

What do we call BAL QSO?

- Broad absorption lines in the blue side of UV lines (C_{IV}, Si_{IV}, Mg_{II})
- Velocities up to 0.2c
- Present in 20% of QSOs
- Mild increase with redshift (Allen et al. 2011)
- Variable on secular timescale (Filiz Ak et al. 2012)

BAL QSOs vs "normal" QSOs

- <u>X-Rays:</u> Emission intrinsically similar, BAL QSOs more absorbed (Green et al. 2001, Gallagher et al. 2007)
- Optical: BALs more reddened, more highly polarized, UV absorption (Goodrich 1997, Krolik & Voit 1998)
- <u>Near-IR:</u> Similar properties (Bruni et al. 2014, Rochais et al. 2014)
- <u>Mid-IR:</u> Similar properties (Gallagher et al. 2007)

<u>Sub-mm, mm</u>: No differences (Lewis et al. 2003, Willott et al. 2003, Priddey et al. 2007)

Unification scheme of AGN

Explanations for the BAL phenomenon

Orientation Scenario (Elvis 2000)

Explanations for the BAL phenomenon

PRO:

- Naturally explains why BAL/non-BAL QSOs are so similar
- Explains higher reddening/obscuration in BAL QSOs
- Explains higher polarisation (optical band) via resonant scattering

CONTRA:

Variety of radio spectral indices (Becker et al. 2000, Montenegro-Montes et al. 2008, DiPompeo et al. 2011, Bruni et al. 2012)

Found both edge-on (FR II) and polar (strongly beamed) BAL QSOs (e.g., Gregg et al. 2006, Zhou et al. 2006)

Explanations for the BAL phenomenon

Evolutionary Scenario

Young or recently refueled quasars (Briggs et al. 1984; Lipari and Terlevich 2006)

PRO:

Anticorrelation between radio-loudness and the BAL phenomenon (Gregg et al. 2006)

CONTRA:

Same cold and warm dust properties of BAL/non-BAL QSOs (Becker et al. 2000; Gregg et al. 2000, Kunert-Bajraszewska & Marecki 2007, Willott et al. 2004, Bruni et al. 2015)

Our observational campaign

Radio continuum & polarization (Effelsberg, VLA, GMRT)

Morphology & orientation (EVN, VLBA)

Infrared spectroscopy: central BH mass estimation (TNG)

SED fitting

- Both for BAL (25) and non-BAL (34) samples
- Determination of the peak frequency

GPS: 32% BAL QSOs 23% non-BAL QSOs

 Evidence of low-frequency (older) components in some cases (12% BAL QSOs, 18% comparison QSOs)

Bruni et al. 2012

SED fitting

Spectral indexsteep:68% BAL QSOs50% non-BAL QSOs

Wide range of orientations

pc-scale morphologies from VLBI

Bruni et al. 2013

In some cases a complex morphologies, at also different scales, is present. Project size up to ~200 kpc.

Different radio phases?

NIR helps...

BAL QSOs are less common in RL QSOs (Becker et al. 2001; Gregg et al. 2006)

...we compared 16 RL vs 18 RQ BAL QSOs, through NIR spectra:

- BH mass distributions do not significantly differ
- Similar Eddington ratios

similar accretion rates

• Similar dimensions for BLRs

No clear differences in the central engine geometry / physics: same objects presenting BALs can become/have been RL?

New constraints from GMRT...

- CSS components arise when extending SED coverage
- Most of objects (~80%) are in a GPS or GPS+CSS phase
- CSS, older component suggests a restarting activity

Not so dusty

- Only 1/17 (6%) sources observed at mm wavelengths present emission due to dust vs ~26% found by Omont et al. (2003) for QSOs
- BAL are dust-poor w.r.t. other QSOs?
- Possible feed-back on star formation?

Conclusions

- Indications of a young/restarting phase in radio-loud BAL QSOs
- Different morphologies, sizes from ~10 pc to ~200 kpc
- Dust-poor objects w.r.t. general QSOs, possible feed-back on star formation
- Same BH masses, BLR gemetries, Eddington ratios

Are accretion-disk outflows precursors of radio jets?

Thank you!

MOIZALA,

Conclusions

The BALs are most probably produced by outflows, but:

- with different possible orientations (recollimated outflows?)
- ② Present in different evolutionary stages of the QSO
- ③ Probably as an intermittent phenomenon (Filiz Ak et al. 2012)

Sample selection

1) Morphology

- 8 resolved source with the VLA:
 4 BAL + 4 non-BAL QSOs (16% vs 12%)
- Linear sizes from 20 to 400 kpc for both
- Similar morphologies

2) Variability

• Calculation of the flux-density variability (4.8 and 8.4 GHz; Var>20%; σ_{var} >4)

$$Var_{\Delta S} = \frac{S_{max} - S_{min}}{S_{min}}$$

$$\sigma_{Var} = \frac{|S_2 - S_1|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

- I BAL vs 3 non-BAL QSOs present variability
- Results confirmed by the variability study of the RBQ sample (20% vs 14%) (Montenegro-Montes e al. 2008)

Polar orientation is not preferred

5) Polarimetry

- Polarisation percentage
- Rotation Measure

~ 1-10% Similar to non-BAL QSOs

800<|RM|<3500 rad/m², 1 outlier

$$RM = 8.1 \times \int (n_e \cdot B_{\scriptscriptstyle \rm II}) dL \quad [rad \cdot m^2]$$

4 core-jet

- 2 doubles
- 3 symmetric
- 2 unresolved (18%)

□ 10<LS<100 pc

Bruni et al. 2013

□ 82% of sources are resolved at pc-scale

- □ Different morphologies imply different possible orientations
- Missing flux in some cases, possibly due to extended components.
- □ Linear sizes up to 200 kpc from previous VLA observations: not all sources are young/compact.

Why are RL BAL QSOs rare?

- BAL QSOs are 4 time less common among QSOs with R*>2 (Stocke et al. 1992)
- FR II BAL QSOs found by Gregg et al. (2006) with strong anticorrelation between Radio-Loudness and BAL strength

Near-Infrared observations

- TNG-NICS spectroscopic
 observations of 16 RL + 18 RQ BAL
 QSOs, optically bright (r<19)
- Low resolution (R~50) but high-sensitivity, with the AMICI prism (0.85-2.4 microns).

Mass of the BH from FWHM of MgII and H_{β} $M_{\rm BH} \ [M_{\odot}] = 10^{6.86} \left[\frac{\rm FWHM(MgII)}{1000 \ km \ s^{-1}} \right]^2 \left[\frac{\lambda L_{\lambda}(3000 \ \text{\AA})}{10^{44} \rm erg \ s^{-1}} \right]^{0.50}$ Vestergaard et al. 2006 $M_{\rm BH} \ [M_{\odot}] = 10^{6.91} \left[\frac{\rm FWHM(H\beta)}{1000 \ km \ s^{-1}} \right]^2 \left[\frac{\lambda L_{\lambda}(5100 \ \text{\AA})}{10^{44} \rm erg \ s^{-1}} \right]^{0.50}$ Vestergaard & Osmer 2009 3.0 2.0 2.0 Count Count Count 1.0

00

8.0

8.5

9.0

9.5

Log (M) [Solar Masses]

10.0

11.0

10.5

11.0

0.0

8.0

8.5

9.0

9.5

Log (M) [Solar Masses]

10.0

10.5

Eddington ratio and BLR radius

$$\frac{L_{bol}}{L_{Edd}} \approx 0.13 \left(\frac{\lambda L_{\lambda}(5100 \text{ Å})}{10^{44} \text{ ergs s}^{-1}}\right)^{0.5}$$

 $R_{BLR} = A \cdot \left[\frac{\lambda L_{\lambda}(5100)}{10^{44} \text{erg s}^{-1}} \right]^{0.5} \text{ lt} - \text{days}$

Kaspi et al. 2000, 2005 Bentz et al. 2006

Kaspi et al. 2000

Similar values for Eddington ratios:

all super-Eddington (selection effect)
 mean values of 2.41 vs 2.92

Similar values for BLR: 427±191 vs 501±155 light-days

Results from the SDSS DR7 QSO catalogue (Shen et al. 2011)

- □ 69 RL vs 3369 RQ BAL QSOs
- a 3650 BAL vs 79650 non-BAL QSOs
- means within ±1 sigma for RL vs RQ BAL QSOs

- High accretion rates required to trigger the BAL phenomenon?
- BH mass is not responsible for the rarity of RL BAL QSOs

(Bruni et al. 2014, in prep.)