

Probing the environment of sources with high Faraday Rotation Measure - A multifrequency study in the radio band -

Alice Pasetto - A. Kraus (MPIfR), K.H. Mack (IRA-INAF), G. Bruni(MPIfR) and C. Carrasco González (CRyA-UNAM)-

High-RM: why

STUDYING THE MEDIUM OF AGN-HOSTING GALAXIES IN ORDER TO VERIFY IF ANY CONNECTION IS PRESENT WITH

- The aim

• AN EVOLUTIONARY TRACK

AND/OR

• A PERIODIC RADIO ACTIVITY PHASE OF THE CENTRAL AGNS (FERRARESE ET AL. 2001, SAIKIA & JAMROZY 2009, O'DEA 1998)

> One step forward into AGNs characterisation... Polarisation properties are powerful tools to study the medium: - Faraday Rotation - Faraday Depolarisation

High-RM: why

- Faraday Rotation

FARADAY ROTATION

ROTATION OF THE POLARISED PLANE OF AN ELECTROMAGNETIC WAVE PASSING TROUGH A MAGNETISED PLASMA

$$\chi(\lambda) = RM\lambda^2 + \chi(0)$$
$$RM = 0.81 \int n_e B_{\parallel} dl$$

High-RM: why

- Faraday Depolarisation

DEPOLARISATION

REDUCTION OF THE POLARISATION PERCENTAGE WITH INCREASING WAVELENGTH IT CAN BE INTERNAL OR EXTERNAL:

Internal: when the emitting AND Faraday rotating regions WITHIN the source are intermixed (Burn 1966)

$$m(\lambda) = m_0 \cdot sinc[\lambda^2 \cdot RM_{int}]$$

When there is/are Faraday screen/s (magneto-ionic region) intervening material along the line of sight (Burn 1966)

External:

 $m(\lambda) = m_0 exp(-2\sigma_{rm}^2 \cdot \lambda^4)$

The instruments

broad-band observations from single-dish to high resolution VLBI technique

High-RM: where

The source selection:

OBJECTS SUFFERING FROM STRONG DEPOLARISATION AT 20CM (1.4GHZ)

• BRIGHT SOURCES WITH NO POLARISATION DETECTION AT 20 CM IN THE NVSS SURVEY (FWHM 45")

• CROSS CORRELATED WITH FIRST SURVEY (20 CM, FWHM 5")

502 BRIGHT UNPOLARISED AND POINT-LIKE SOURCES

High-RM: how - Effelsberg the beginning

- Single dish (Effelsberg 100-m) observation at 10.45 GHz searching for polarisation: 30 are the CANDIDATES for high-RM
- Single dish (Effelsberg 100-m) Follow-up programme: observations at 2.6, 4.8, 8.6, 10.45, 15 GHz to determine the RM as a linear regression fit

- Effelsberg results: SEDs and pol. info

- Effelsberg results: SEDs and pol. info

- Effelsberg results: SEDs and pol. info

10

(Pasetto et al. 2015, in prep.)

High-RM: how - Effelsberg results: RM values

• Contributions from the Milky Way and from the Cosmic web are a few rad compared with the measured RM

•

• Correction of the RM with *z*: $RM_{int} = RM_{obs} \cdot (1+z)^2$

							distance in the second s
Source	α	err	RM _{obs}	err	RM_{mw}	Z	RM _{rf}
	1.4-10.45		[rad/m ²]			k	[rad/m ²]
0239-0234	0.45	0.013	-43.1	6.1	7.0	1.1	-224.5
0243-0550	-0.06	0.015	625.7	55.1	9.0	1.8	4852.6
0742+4900	0.16	0.015	-199.644	33.6	5.0	2.3	-2228.6
0751+2716	-0.98	0.027	462.3	50.3	12.0	1.5	2814.5
0845+0439	0.22	0.013	1923.5	15.4	31.0	1.5	11828.4
0925+3159	-0.84	0.037	-56.2	50.1	19.0	1.5	-470.5
0958+3224	-0.31	0.012	2201.9	64.8	18.0	0.5	5116.4
1015+0318	-0.83	0.056	245.9	50.9	3.0	1.5	1518.5
1043 + 2408	0.53	0.015	-62.5	7.4	-4.0	0.6	-142.8
1044 + 0655	-0.15	0.023	-215.5	16.8	15.0	2.1	-2177.3
1048 + 0141	-0.06	0.017	-2510.8	32.4	11.0	0.7	-7194.0
1146+5356	0.20	0.047	-446.1	8.0	9.0	2.2	-4663.1
1213+1307	-0.57	0.016	19.0	1.8	-10.0	1.1	132.8
1246-0730	0.26	0.014	882.8	10.5	1.0	1.3	4608.3
1311+1417	-0.67	0.023	566.5	11.2	4.0	1.9	4907.7
1312+5548	-0.76	0.054	-967.4	160.8	10.0	1.5	-6109.3

Further interferometric observations: sources with

 $RM_{obs} \ge 500 \quad rad/m^2$

Redshift z

Milky way (FEW rad/m^2 above b=20 deg)

Earth

11

-Histograms

(Farnes et al. 2014)

RM distribution: - HighRM object: RMobs: 3000 rad/m^2; -Farnes RM ~ 0 The two distributions are different at a confidence level > 95%

(Pasetto et al. 2015, in prep.)

Spectral index distribution: HIGH-RM are mostly flat and inverted; Farnes targets are steep

High-RM: how - Effelsberg conclusions

	Obs RM > 500 rad/m^2	Rest Frame RM > 500 rad/m^2
OLD	30%	50%
GPS-like	10%	50%
Mixed	80%	100%
Total	40%	67%

- The existence of compact components at high frequency (2-10 GHz) suggest the presence of a DENSE MATERIAL end/or an INTENSE MAGNETIC FIELD that could be the cause of the peculiar behaviour that we are seeing in polarisation.
- Single dish data seem to indicate that high-RM AGNs could be characterised by some evolutionary track and/or they could experience some restarting activity. Higher resolution observations are crucial.

Current work: going deeper...

JVLA OBSERVATIONS

(PRELIMINARY RESULTS) OBSERVATIONS AT HIGHER RESOLUTION WIDEBAND L,C AND X-BAND FULL POLARISATION FOR THE

MOST EXTREME OBJECTS: **12** SOURCES $RM_{obs} \ge 500 \quad rad/m^2$

RM-Synthesis Technique

- NO " $n\pi$ " ambiguities; •
- Recognition of several Faraday depth • components within the source;
- The inverted Fourier transform allows • one to determine the physical situation -0.2 from observables; -0.4

400

600

$$R(\phi) = K \sum_{c=1}^{N} w_c \cdot exp[-2i\phi(\lambda_c^2 - \lambda_0^2)]$$

COMING SOON...

1

0.8

0.6

0.4

0.2

-0.6

-0.8

-1

400

Future work: zoom into the sources

VLBI OBSERVATIONS

• C (5GHZ) AND X (8GHZ) BAND WITH EVN

- U (15 GHZ) AND K (23GHZ) BAND WITH VLBA
 - Produce detailed polarisation maps;
 - Map the polarisation angle of the different components;
 - Identify which are the components contributing to the existing high-RM;
 - Magnetic field estimate ;

Observations partly done, partly scheduled

Summary & first conclusion

- Effelsberg observations helped us to define the sample and to give us first hints on the complexity of these peculiar targets AGNs in an EARLY/PERIODIC activity phase.
- JVLA and VLBI studies will help us to understand IF this assumption could be considered real and add some more solid descriptions and analysis on the knowledge of AGNs.

Max-Planck-Institut für Radioastronomie

Stay tuned...

Thank you!

RMobs and RMrf for the 3 object types. The MIXED have ALL really high RM

