Search for Extreme Rotation Measures in CSS Sources Bill Cotton, NRAO

Collaborators: Y. Kovalev, E. Kravchenko, ASC, E. Fomalont, NRAO

Motivation

- High plasma densities and strong magnetic fields are expected near BH at core of AGN nuclei
- Magnetized plasma is birefringent, rotating the polarization angle of linear polarization.
- Faraday rotation:

$$\chi = \chi_0 + \mathrm{RM} \cdot \lambda^2$$

Polarization angle, χ , rotates with wavelength squared RM = Rotation measure

Faraday Rotation

 Rotation measure is integral of electron density times component of magnetic field along LOS.

$$\mathrm{RM} = \frac{e^3}{8\pi^2\epsilon_0 m^2 c^3} \int n_e \boldsymbol{B}_{||} d\boldsymbol{l}.$$

Faraday rotation in AGN nuclei

- Background radiation will be Faraday rotated passing through dense magnetized plasma.
- Varying Faraday rotation can depolarize.
- Sgr A* strongly depolarized at cm wavelengths.
- Sgr A* has RM ~ ¹/₂ million, could be more in more active nuclei.

Cartoon AGN nuclei

Detection of Dense Magnetized Plasma

- Polarimetric measurements can detect Faraday Rotation near nuclei of AGN.
- Multiple LOSs with different RM may depolarize, low fractional polarization may indicate dense screen.
- Need emission embedded in or behind screen.

CSS Nuclei

- Many are weakly polarized at cm λ
- Possibly depolarized by dense screen
- Better observed at short λ :
 - Faraday effects are less
 - → Opacity is less → see closer to nucleus
- but CSS sources are faint at short λ.
- EVLA has good sensitivity 20 45 GHz

EVLA Observation of CSS Sources

- 3C48, 3C138, 3C147, (3C286) in standard calibrator observations (public).
- 6×1 GHz bands 20 45 GHz
- A configuration, ~60 mas resolution
- Image at common resolution
- Pixel by pixel fitting of RM
- Examine nucleus

3C138 with ALMA band 6 240 GHz

100

200

300

100

Milliarcseconds

200

()

-100

0

-200

-300

3C138 7 mm

0

250

200

150

100

50

0

-50

-100

-150

500

400

Milliarcseconds

 \cap

I Pol contours, Fpol color, EVPA vectors

3C147

I Pol contours, Fpol color, EVPA vectors

(x10⁻⁴)

(x10⁻⁴)

Results

- 3C48 fpol low but increases with frequency, RM ~ 10,000
- 3C138, low fpol, core RM ~-3000
 - cm value (Cotton+ 2003 RM ~-5000)
 - seen through holes in apparently dense Faraday screen.
 - ALMA result supports
- 3C147, low RM, high Fpol
- High RM components possibly masked by low RM components, need denser λ² coverage.
- Need higher frequencies to get closer to the BH

Faraday Analysis

- Multiple RM/complex structures can be revealed by Faraday Analysis
- Fourier Transforms data in λ^2 space.
- Separate RM components seen as peaks.
- Need dense coverage to get good transfer function.
- Allows detection of high RM component in the presence of low RM.

Further observations

- EVLA measure nearly complete 20-48 GHz on a selection of sources – in progress.
- ALMA Cycle 3 proposal for several sources at 350 GHz.

Summary

- Low fpol, moderate RM seem in 3C48, 3C138 up to 45 GHz
- 3C147, high fpol, low RM
- Continuing observations to do Faraday analysis
- Higher frequencies?