Identifying High Frequency Peakers using the Korean VLBI Network

Yonsei University/KASI, SOUTH KOREA

Aeree Chung (Yonsei University), Bong Won Sohn (KASI)

2015. 5. 28 5th CSS/GPS Workshop

High Frequency Peaker

Size << 1 kpc

HFP < 1 kpc

Host galaxies (giant elliptical) ~ 30 kpc

High Frequency Peaker

- Size << 1 kpc
- Peak frequency > 5 GHz

Convex spectrum peaking at high radio frequency

High Frequency Peaker

- Size << 1 kpc
- Peak frequency > 5 GHz
- Age 100-1000 yrs

PROBLEM

Problem:

Contamination by other types of radio sources (**blazars**) among the HFP samples

HFP selection tools

- Compact size
- Convex spectrum peaking at frequency

PROBLEM

PROBLEM

Problem:

Contamination by other types of radio sources (**blazars**) among the HFP samples

HFP selection tools

- Compact size
- Convex spectrum peaking at frequency

Aims: Obtain a sample of genuine

young radio sources (HFPs)

19 HFP candidates

- Sample selection
 - Selected from Dallacasa+ 2000; Labiano+ 2007; Vollmer+ 2008
 - Peak frequency > 5 GHz
 - Peak flux density > 1 Jy
 - $\delta \ge -32.5 \text{ deg}$ (accessible with KVN)
- 0.077 < z < 3.280

19 HFP candidates

No.	Name		Z	Ref.
	J2000	B1950		
1	J0217+0144	0215+015	1.715	D
2	J0251+4315	0248+430	1.310	L
3	J0422+0219	0420+022	2.227	V
4	J0459+0229	0457+024	2.384	L
5	J0530-2503	0528-250	2.778	L
6	J0555+3948	0552+398	2.365	V
7	J0745+1011	0742+103	2.624	L
8	J0745-0044	0743-006	0.994	L
9	J0927+3902	0923+392	0.695	D
10	J1146-2447	1143-245	1.940	L,V
11	J1407+2827	1404+286	0.077	D,L,V
12	J1522-2730	1519-273	1.294	L
13	J1751+0939	1749+096	0.322	D,L,V
14	J2101+0341	2059+034	1.013	D
15	J2123+0535	2121+053	1.941	D,V
16	J2129-1538	2126-158	3.268	L,V
17	J2136+0041	2134+004	1.945	D,V
18	J2212+2355	2209+236	1.125	D,L
19	J2320+0513	2318+049	0.622	D

METHODS

Observation 1

- KVN (Korean VLBI Network) single-dish observation
- Long-term Monitoring
 - Dec. 2010 Apr. 2013 (2.5 years)
 - 18 epochs
- Simultaneous multifrequency
 - 22 GHz (K-band), 43 GHz (Q-band)
 - Bandwidth 512 MHz

Results 1-1. Variability
 A 3 GHz (K-band)

▲ 43 GHz (Q-band)

- Modulation index was adopted to quantify variation.
- In total, 12 out of 19 are found with significant variability whereas the rest 7 sources can be classified as HFPs

Results 1-2. Spectral properties

- In total, 11 out of 19 sources are classified as steep and 8 are classified as flat.

Results 1-2. Spectral properties

- Spectral index is the measure of how flat or steep the spectrum is.
- HFPs are expected to show steep spectra while the spectra of blazars are likely to be flat.
- In total, 11 out of 19 sources are classified as steep and 8 are classified as flat. 9

Results 1-2. Spectral properties

- Spectral index is the measure of how flat or steep the spectrum is.
- HFPs are expected to show steep spectra while the spectra of blazars are likely to be flat.
- In total, 11 out of 19 sources are classified as steep and 8 are classified as flat. 9

Observation 2

negolution. 2 mas 22 Gra, 0.6 mas at 45 thiz

7 of 19 sources

 \bullet

Designed by Satoko Sawada-Satoh

Results 2. Morphology

HFP candidates

Blazar candidates

Conclusion

- We identified 7 HFP candidates among 19 sources in previous sample using KVN single-dish long term monitoring observation
 - Seven of nineteen sources (36.8 %) were HFPs
 - Twelve of nineteen sources (63.1%) were blazars
- 2. We compared morphological properties HFPs with blazars using KaVA VLBI observation
 - Five sources are resolved into 2 or 3 components

Future Works

- 1. Morphological study using spectral index map
 - KaVA VLBI observation at least two frequencies
- 2. Gas properties of host galaxy with 7 HFP candidates
 - Ionized gas emission line, molecular line observation

Thank you!