The Lockman Hole with LOFAR: Searching for GPS and CSS sources at low frequencies

Elizabeth Mahony, Raffaella Morganti, Isabella Prandoni, Ilse van Bemmer and many others in the LOFAR Surveys Key Science Project.

Why search for GPS and CSS sources at low frequencies?

- 'nearby' CSS sources
 - Correlation between spectral peak and linear size

- High-z GPS sources
 - Correlation between spectral peak and source age -> redshifted to low frequencies

de Vries et al., 2008

Snellen et al., 2006

The LOw Frequency ARray (LOFAR)

Onsala

- 38 NL stations
 - 24 core stations (100 m 2 km)
 - 14 remote stations (up to 100 km)
- 9 International stations
 - 3 new stations coming online (Poland)

The LOw Frequency ARray (LOFAR)

- 38 NL stations
 - 24 core stations (100 m 2 km)
 - 14 remote stations (up to 100 km)
- 9 International stations
 - 3 new stations coming online (Poland)
- Frequency coverage:
 - HBA (110-190 MHz)
 - LBA (10-90 MHz)
 - Bandwidth available: 95 MHz
 - Up to 488 subbands of 0.2 MHz each
- Primary beam:
 - HBA: ~5 degrees
 - LBA: ~7 degrees

LOFAR Core

Nançay

AST(RON

LBA

HBA

The LOw Frequency ARray (LOFAR)

- 38 NL stations
 - 24 core stations (100 m 2 km)
 - 14 remote stations (up to 100 km)
- 9 International stations
 - 3 new stations coming online (Poland)
- Frequency coverage:
 - HBA (110-190 MHz)
 - LBA (10-90 MHz)
 - Bandwidth available: 95 MHz
 - Up to 488 subbands of 0.2 MHz each
- Primary beam:
 - − HBA: ~5 degrees
 - LBA: ~7 degrees
- LOFAR Tier 1 survey:
 - 2 π str, 0.1 mJy rms

Nançay

Netherlands Institute for Radio Astronomy

The Lockman Hole field

- Observed as part of the Surveys KSP (PI: Philip Best)
- Extensive multiwavelength data:
 - PanSTARRS, UKIDSS, SERVS, SWIRE, HerMES, VLA, GMRT, WSRT,
 Chandra, SCUBA, SCUBA-2, Galex
- Multiwavelength radio data covering a wide range in frequency:
 - WSRT: 1.4 GHz, 7 deg², 11 uJy
 - WSRT: 350 MHz, 0.7 mJy
 - GMRT: 610 MHz, 5 deg², 60 uJy
 - 10C: 15 GHz, 4.5 deg², 0.1 mJy

The Lockman Hole

AST(RON Netherlands Institute for Radio Astronomy

HBA observations (110-180 MHz)

300 subbands (70 MHz bandwidth)

10 hrs int. time

14x18" resolution

rms ~0.15 mJy

> 5000 sources detected

Spectral indices of low-freq. sources

- Crossmatched with deep WSRT mosaic
 - 1366 matches.
 - All LOFAR sources have a 1.4 GHz counterpart
- Counterparts at other frequencies:
 - GMRT (610 MHz): 125 matches
 - WSRT (345 MHz): 222 matches
 - LOFAR LBA (60 MHz): 43 matches
 - 10C (15 GHz): 119 matches
- Required at least 4 points in radio SED
 - Leaves us with a sample of 117 sources to search for peaked spectra

alpha-alpha plots

Netherlands Institute for Radio Astronomy

MHz-peaked spectrum sources in the Lockman Hole field

MHz-peaked spectrum sources in the Lockman Hole field

MHz-peaked spectrum sources in the Lockman Hole field

- Ultra Steep Spectrum (USS) source
 - 100 mJy at 150 MHz,
 very steep (α=-1.6) up
 to 1.4 GHz
 - No detection at 60 MHz (< 120 mJy)
 - Possible spectral peak@ 100 MHz?
 - No SDSS counterpart,3.6um dectection at 10 uJy.

Preparing for LOFAR surveys

- We detect 7/117 (6%) GPS/CSS sources in the Lockman Hole field
- Extrapolating this to the full LOFAR sky survey (2π str): can expect to detect more than 20,000 MHz-peaked sources
 - However, strongly dependent on the multiwavelength data available!
- How to separate high-z GPS sources from nearby CSS sources?
 - Follow-up in Optical/NIR
 - Need higher resolution data -> aim is to get to 5 arcsec resolution

Higher resolution LOFAR images...

Summary

- LOFAR is an ideal instrument for searching for high-z GPS or nearby CSS sources (where the spectral peak occurs at MHz frequencies).
- In the Lockman Hole field we discover 7 new GPS/CSS sources peaking at MHz frequencies
 - Corresponds to 6% of the sample studied
 - Can expect to find > 20,000 in full LOFAR sky survey
- BUT...
 - Only possible with multi-frequency radio data, in particular need deep 1.4 GHz data!

Observations + data reduction

- HBA observations (110-180 MHz)
 - Cycle 0 observations, 10 hrs, 366 subbands
 - 3C196 + 3C295 observed for 10 mins at beginning and end

Data reduction:

- Preprocessing (RFI flagging/averaging 5sec, 4 channel per SB)
- Solve for amplitude solns on primary calibrator (3C295)
- Transfer solutions (both amp and phase) to Lockman Hole
- Combine SBs into groups of 10 (2 MHz bandwidth)
- Solve for phase-only solutions on Lockman Hole field
- Peel 3C244.1 (~30 Jy source in the field)
- Phase cal again
- Image

Do we see any spectral flattening?

 Previous studies have found a flattening of the spectral indices towards fainter flux density limits (Prandoni+ 2006, Whittam+ 2013)

- No strong evidence that we're seeing any flattening at these frequencies
 - Although note that we don't detect flat spectrum sources fainter than 21 my

Searching for ultra-steep spectrum sources

- 51 sources with alpha<-1.3
 - 18 compact
 - -> candidate USS sources
 - None of these are known high-z USS sources
 - 10 resolved/diffuse emission
 - -> candidate relics?
 - 23 multi-component radio galaxies

LOFAR

NSRT

Searching for ultra-steep spectrum sources

- Nearby radio galaxies with very steep spectra
 - Extra extended, diffuse emission only detected by LOFAR

Interesting sources

Why search for GPS and CSS sources at low frequencies?

- 'nearby' CSS sources
 - Track intermediate stages of radio galaxy evolution
 - With large samples possibly provide key to
 understanding the FRI/II
 dichotomy
 - Probe nuclear ISM conditions (SSA or free-free?)

- High-z GPS sources
 - Find first radio galaxies: do high-z GPS sources differ from nearby GPS sources?
 - With large samples possibly identify trigger
 conditions for AGN activity
 - Probe nuclear ISM conditions (SSA or free free?)

