### CORRELATION BETWEEN NEUTRAL AND TOTAL HYDROGEN COLUMN DENSITIES IN GPS GALAXIES

L. Ostorero<sup>1,2</sup>, R. Morganti<sup>3,4</sup>, A. Diaferio<sup>1,2</sup>, A. Siemiginowska<sup>5</sup>, Ł. Stawarz<sup>6,7</sup>, R. Moderski<sup>8</sup>, A. Labiano<sup>9</sup>

- 1 Department of Physics University of Torino (Italy)
- 2 I.N.F.N., Torino (Italy)
- 3 ASTRON, Astronomical Institute for Radio Astronomy, Dwingeloo (The Netherlands)
- 4 Kapteyn Astronomical Institute, Groningen (The Netherlands)
- 5 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)
- 6 Department of Physics Tokyo Institute of Technology (Japan)
- 7 Astronomical Observatory, Jagiellonian University, Kraków (Poland)
- 8 Nicolaus Copernicus Astronomical Center, Warsaw (Poland)
- 9 ETH, Zurich (Switzerland)



#### MOTIVATION

BACKGROUND

- Radio emission and HI absorption
- X-ray emission and absorption
- NH vs. NHI

WORK

- Source sample
- Observations with the WSRT
- Data analysis

RESULTS

• NH-NHI correlation

CONCLUSIONS



Constraining

- the dominant source of the X-ray emission
- the location of the radio and X-ray absorbing gas

in GPS galaxies, through absorption studies.

# GPS galaxies with CSO morphology:

BACKGROUND: Radio emission

- \* Spectral turnover at 0.5-10 GHz  $\,$
- \* Linear size: < 1 kpc
- \* Symmetric emission
- \* Dominance of radio lobes



Stanghellini+1997

#### BACKGROUND: HI absorption

\* HI detection rate: - larger in compact than in extended radio sources [Conway 1997, Pihlström+2003, Vermeulen+2003, Gupta+2006, Curran+2013, Geréb+2014]

- especially large when source size LS=0.1-1 kpc [Curran+2013]



Curran+2013

#### BACKGROUND: HI absorption

- \* Remarkable variety of  $\tau_{_{obs.peak}}$  (0.001-0.6) and FWHM (~10-1000 km/s)
- \* Spectral velocities red-shifted and blue-shifted (up to ~1000 km/s) w.r.t. host's systemic velocity
- \* Prominent wings ~1000 km/s

#### $\rightarrow$ <u>COMPLEX GAS DYNAMICS</u>



\* High angular resolution HI observations:

- HI generally detected against radio lobe(s) [Araya+2010 and refs. therein]
- Cf~0.01-1 [e.g., Araya+2010, Morganti+2004,2013]

#### → <u>INHOMOGENEOUS OR CLUMPY ABSORBER</u>

#### BACKGROUND: HI absorbers

#### ACTUAL DISTRIBUTION OF GAS: UNKNOWN!

. . .

- Circumnuclear, clumpy torus (~100 pc)?
- Inclined, thin, clumpy disk? (~100 pc)
- Clouds interacting with the jet/lobe?
- Clouds flowing in and out of the central region of the galaxy?

## BACKGROUND: X-ray emission

GPS/CSO galaxies:

- \* High detection rate in X-ray studies
- \* 18 known sources
- \* Usually not spatially resolved with Chandra (<1")
- \* Source of X-rays:
  - accretion disc corona: thermal comptonization of disc radiation [Guainazzi+2004,2006, Vink+2006, Siemiginowska+2008, Tengstrand+2009]
  - ISM: thermal emission from shocks by the expanding jet

[Heinz+1998, O'Dea+2000]

- radio lobes: inverse-Comptonization of local radiation fields [Stawarz+2008,Ostorero+2010]



#### BACKGROUND: X-ray absorption

To be compared with:

- NH(FRI) =  $3.3 \cdot 10^{21}$  cm<sup>-2</sup> (no optically thick torus?) [Chiaberge+1999, Donato+2004]
- NH(FRII) =  $(10^{22} \div > 10^{23} \text{ cm}^{-2})$  (optically thick torus)



\* Main source of X-ray absorption in GPS galaxies: AGN torus? ISM clouds? Any relation with radio absorber?

Size (kpc) 5<sup>th</sup> CSS-GPS workshop, Rimini, May 26-29, 2015

\* NH = NHI + NHII

- \* NH is 1-2 orders of magnitude larger than NHI [Vink+2006, Tengstrand+2009]
  - → X-rays and radio waves trace different absorbers
     → X-ray produced in a region more obscured than the radio lobes (e.g., the accretion disc)

unless an unreasonably high fraction of HII ( $\sim 90\%$ ) is assumed.



\* However ...



#### X-ray (photolectric) absorption:

- \* Measure  $S_{ph}(v)$
- \* Model of  $S_{ph}(v)$  in a given physical scenario (parameters:  $\Gamma$ , Norm., NH, Cf,...)

$$S_{v} = C_{f} S_{0,v_{0}} e^{-\tau_{v_{0}}} + (1 - C_{f}) S_{0,v_{0}}$$
  
$$\tau_{v_{0}} = N_{H,v_{0}} \sigma_{v_{0}}$$



<u>Standard assumptions</u>:  $C_f=1$ (point-like sources)

\* In principle: NH  $\geq$  NHI or NH  $\leq$  NHI NH~NHI with an ad-hoc increase of Ts/Cf in single sources

> If  $NH \sim NHI \rightarrow$  radio and X-ray absorbers are one and the same (radio and X-ray sources may still not coincide)



\* Comparison between NH and NHI with no further a priori assumptions on source and absorber  $\rightarrow$  requires spatially unresolved NHI measurements

#### WORK: GOAL

\* Assemble the largest possible sample of (NHI, NH) pairs to investigate the connection between NH and NHI, using *spatially unresolved* NHI measurements.

#### WORK: SOURCE SAMPLE

- \* Core sample: 21 GPS galaxies, z=0.06 0.76
  - from radio samples by Stanghellini+98, Snellen+98, Torniainen+07, Vermeulen+03
  - also classified as CSO
  - either known X-ray emitters or proposed for observations with Chandra by Siemiginowska et al.
- \* Full sample: 24 sources
  - 21 GPS/CSO galaxies
  - + 3 compact, sub-kpc radio sources (asymmetric GPS, CSO only, candidate CSO)

### WORK: OBSERVATIONS

- \* Westerbork Syntesis Radio Telescope (WSRT)
  - 10/21 sources of the core sample with no HI detections
  - $t_{obs}$  = 4-12 h, 10-20 MHz wide band, 1024 spectral channels



#### WORK: DATA ANALYSIS

- \* Core sample:
  - 3 new HI detections (0941-080, 0035+22, 1031+567)
  - 4 new  $3\sigma$  upper limits



#### **Correlation samples**

NHI: detections or upper limits, narrow and/or broad lines
NH: -Compton thin: detections, upper limits, lower limits
-Compton thick: lower limits

#### **<u>DETECTION SAMPLE</u>** (detections only) : D

\* Pairs of (NHI, NH) detections: available for 9 sources (D sample) \* Each source: N $\geq$ 1 measurements  $\rightarrow$  M varieties of D: D\_i (i=1...M)

#### **ESTIMATE SAMPLE** (detections and limits): E

- \* Pairs of (NHI, NH) estimates: available for 16 sources (E sample)
- \* Each source: N $\geq$ 1 measurements  $\rightarrow$  K varieties of E: E\_i (i=1...K)

#### Detections only (D sample)

#### CORRELATION TESTS



**VISUAL INSPECTION:** internal dispersion larger than error bars!

# **RESULTS: NH-NHI CORRELATION** Estimates (E sample)

SURVIVAL ANALYSIS TECHNIQUES (ASURV PACKAGE [Lavalley+1992])



Not possible to evaluate the goodness of the fit!

Bayesian analysis (detections only)

Correlation analysis reveals: - existence of a correlation

- dispersion larger than the typical error bars

 $\rightarrow$  additional variables are involved in the correlation!

Bayesian analysis (APEMoST [Buchner & Gruberbauer 2011])

Given the existence of an x-y correlation, it enables to derive:

- the parameters of the x-y relation
- the intrinsic scatter of the dependent variable,  $\sigma_{_{int}}$  (y)

Additional hidden parameters are mimiked by assuming y as a random variate with

Mean:  $\langle y \rangle = a + b x$ Variance:  $\sigma_{int} (y)$ 



x = Log NHI,  $y = Log NH \rightarrow y = a + b \cdot x$ 

Parameters:

a=2.78 (+6.82, -9.83)  
b=0.93 (+ 0.49, -0.33)  
$$\sigma_{int}$$
 (y) = 1.27 (+1.30, - 0.40)

|  | Slo  | pe ( | of                |   |
|--|------|------|-------------------|---|
|  |      | T    | •••• <del>•</del> | ) |
|  | NH V | rs.  | NHL               |   |
|  |      |      |                   |   |



X = Log NH, Y = Log NHI  $\rightarrow$   $Y = A + B \cdot X$ 

Parameters: A=13.0 (+4.4, -7.3)  
B=0.35 (+ 0.33, -0.20)  
$$\sigma_{int}$$
 (Y) = 0.93 (+0.58, -0.26)  
5<sup>th</sup> CSS-GPS workshop, Rimini, May 26-29, 2015

Bayesian analysis on NHI vs. NH sample:

NH]

Quantifies the intrinsic spread on NHI, for any given NH

Log NHI e.g. For a given NH  $\rightarrow$  Log NHI = < Log NHI >  $\pm \sigma_{_{int}}(NHI)$ with  $\sigma_{int}$  (NHI) =  $\pm 0.93$  dex  $\rightarrow$  NHI can vary by a factor ~70 about the mean relation Log NH NĦ Because  $N_{HI} \propto \frac{T_s}{C_f} \tau_{obs}$ , if  $\boldsymbol{\tau}_{_{obs}}$  and NH were tightly correlated  $\rightarrow$  Ts/Cf can vary of a factor ~70 about Ts/Cf=100 K, i.e. Ts/Cf ~ 12-851 K  $\rightarrow$  "true" Ts/Cf of a source: deviation from the mean relation 5<sup>th</sup> CSS-GPS workshop, Rimini, May 26-29, 2015

- \* Warning:
  - Sources are inhomogeneous

- Relation  $N_{HI} \propto {T_s \over C_f} \, au_{obs}$  : more appropriate for spatially resolved observations

- \* With NHI data from spatially resolved measurements:
  - if the correlation is confirmed:  $\sigma_{_{\rm int}}({\rm NHI}) \rightarrow {\rm Ts/Cf}$  range
  - if Cf~1:  $\sigma_{int}(NHI) \rightarrow Ts$  range

 $\rightarrow$  "true" Ts of a source: deviation from the mean relation

### CONCLUSIONS

\* We performed new *spatially unresolved* HI absorption measurements of GPS galaxies with the WSRT to increase the NH-NHI sample

\* We find a significant correlation between NH and NHI

- \* Linear regression yields:  $NH \sim NHI^{b}$ , with b~1, however the fit is not acceptable
  - → The NH-NHI relationship (with Ts/Cf=100 K) is not a 1-to-1 relation: intrinsic spread due to Ts/Cf

### CONCLUSIONS

- \* Bayesian analysis simultaneously quantifies:
- the parameters of the NH-NHI relation

 $NH \sim NHI^{b}$ , with  $b \sim 0.9 \rightarrow$  suggestive of strong correlation between intrinsic properties of X-ray and HI absorbers



- the intrinsic spread of the data set

 $\sigma_{int}(NHI) = 0.93 \text{ dex} \rightarrow \text{factor ~70 in NHI for any NH}$ 

 $\rightarrow$  Ts/Cf estimate

 $\rightarrow$  Ts estimate if Cf~1 (resolved HI observations)

# Thank you!